UNIVERSAL 9-LIKE COMPACTA

Michael C. McCord

1. INTRODUCTION

A *compactum* is a compact, metrizable space. A *continuum* is a connected compactum. By a *polyhedron* we mean a finitely triangulable space.

If $\mathscr C$ is a class of spaces, a *universal* member of $\mathscr C$ is a member of $\mathscr C$ in which every member of $\mathscr C$ can be imbedded. K. Menger [11] described an n-dimensional continuum which he conjectured (and proved in the case n=1) to be a universal n-dimensional compactum. G. Nöbeling [12] produced a different space, which he showed to be a universal n-dimensional, separable, metrizable space. S. Lefschetz [8] (independently of [12]) verified Menger's conjecture. See Hurewicz and Wallman [7, p. 64] for a treatment of Nöbeling's theorem. R. M. Schori [13], [14], has shown that there exist universal snake-like continua (see R. H. Bing [1]).

We present a single, rather general theorem (Theorem 1) that implies (see Theorem 2) both Schori's result and the existence of universal n-dimensional compacta. The method of proof, involving inverse limit systems, is an extension of Schori's method. Lefschetz's proof of Menger's conjecture used a version of polyhedral inverse limit expansions. The main feature of the present approach is the additional use of polyhedral inverse limit systems to *define* the required universal spaces.

The framework needed for our theorems is the theory of \mathscr{P} -like compacta, where \mathscr{P} is a class of polyhedra. See Mardešić and Segal [9]. If α is an open cover of the compactum X, a map f of X onto a compactum Y is called an α -map provided that for each y in Y, $f^{-1}(y)$ is contained in some member of α . Let \mathscr{P} be a class of polyhedra. Following [9], we say a compactum X is \mathscr{P} -like if for each open cover α of X there exists an α -map of X onto some member of \mathscr{P} .

We are concerned with the following question: For which classes \mathscr{P} is there a universal \mathscr{P} -like compactum? Theorems 1 and 2 are positive results; Theorems 3 and 4 are negative. Part of the results were announced in [10].

2. STATEMENT OF THEOREMS

Definition 1. The class $\mathscr P$ of polyhedra is called $\mathit{amalgamable}$ if for each finite sequence (P_1, \cdots, P_n) of members of $\mathscr P$ and maps $\phi_i \colon P_i \to Q$ $(1 \le i \le n)$, where $Q \in \mathscr P$, there exists a member P of $\mathscr P$ with imbeddings $\mu_i \colon P_i \to P$ and a map ϕ of P onto Q such that $\phi_i = \phi \mu_i$ for each i. We call $(P, \phi, \mu_1, \cdots, \mu_n)$ an $\mathit{amalgamation}$ of (ϕ_1, \cdots, ϕ_n) .

THEOREM 1. If $\mathscr P$ is an amalgamable class of polyhedra, then there exists a universal $\mathscr P$ -like compactum.

Received February 6, 1965.

This work was supported in part by the National Science Foundation, Contract G-11665.