NONHOMOGENEOUS DIFFERENTIAL OPERATORS

Allan M. Krall

1. INTRODUCTION

Let $P = (p_{ij})$ be an n-by-n matrix whose elements are real-valued and continuous on a finite interval [a, b]. Differential operators of the form LY = Y' + PY, where Y is an n-by-n matrix, were first seriously studied by Birkhoff and Langer [1], who considered a system consisting of the differential operator LY = Y' + PY and a boundary condition of the form U(Y) = AY(a) + BY(b) = 0, where A and B are nonsingular n-by-n matrices.

W. M. Whyburn discussed systems of the form

LY = 0, AY(a) + BY(b) +
$$\int_a^b F(x) Y(x) dx = 0$$
,

where F is an integrable matrix. He defined an adjoint system whose existence depends on the existence of a solution to Z' - ZP = F that is nonsingular over [a, b] (see [9, pages 53-54]).

R. H. Cole [3] succeeded in defining an adjoint system whose existence depends only on A and B. This system is a slight generalization of the problem discussed by Whyburn. The adjoint, however, is no longer a differential system.

The present paper generalizes the system discussed by Whyburn, but in a different direction. We shall now show that if A, B, C, D are constant matrices and K_1 and K_2 are integrable matrices, then the existence of our adjoint to the system

$$MY = LY + K_2(x)[CY(a) + DY(b)] = 0$$
,

$$H(Y) = AY(a) + BY(b) + \int_{a}^{b} K_{1}(x) Y(x) dx = 0$$

depends only on A, B, C, and D; moreover, if the adjoint system exists, it has the same form. We shall show that if the system is incompatible, then the nonhomogeneous system MY = F, H(Y) = 0 has a solution of the form

$$Y(x) = \int_a^b G(x, t) \dot{F}(t) dt,$$

where G(x, t) is a formal solution of the system MY = 0, H(Y) = 0, for $x \neq t$.

If both the system MY = 0, H(Y) = 0 and its adjoint are incompatible, the Green's function for the adjoint system is -G(t, x). However, if MY = 0, H(Y) = 0 is incompatible, it is possible under certain conditions for the adjoint system to be compatible, a situation that does not occur for ordinary differential systems.

Received August 10, 1964.