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TO THE ORDINALS
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In this paper, we prove that an ordering relation is scattered and homogeneous if
and only if for some ordinal ¢ it is isomorphic to the antilexicographically ordered
set of all ¢-termed sequences of integers that are almost always zero. The algebra
of all homogeneous scattered types, under ordinal multiplication, turns out to be iso-
morphic to the ordinals under ordinal addition.

We shall use the notation of [3] with one exception. For the ovdeved sum of the

rvelations G(x) over R, we write G(x) rather than 20 G(x); analogously, for the
x,R R
ovdinal sum of the types y(x) over R, we write 27 y(x) rather than Z)-y(x).
x,R R

ordering relation R is (one point) komogeneous, if for any x, y € F(R) there exists
an automorphism f of R with f(x) = y. Analogously, an order type « is homogene-
ousif e =B+1+y=p"+1++" implies 8 =8"'" and y =y'. We identify the ordinal
¢ with the set of all ordinals less than ¢. If ¢ has a predecessor, we call the pre-~
decessor ¢ - 1. The symbol 8¢ stands for the set of all functions on ¢ to the set of
integers. If ¢ <p, M € 8% N € 8P, and M, =N, for every t < ¢, then we shall
refer to N as an extension of M. Let ¢ be an ordmal and let N € 89%; then Z%
will denote the relation whose field consists of all elements M € 8% such that
M, =N, for almost all (all but finitely many) ¢ < ¢; the elements of F(Z¢') are
ordered antilexicographically. The order type of Zﬁ is obviously the same for any

choice of the sequence N. If for N we choose the function on ¢ with range {0}, we
write Zg’. Hence, if we use the notation of [2, Chapter VI, Section 3], then

DY = (w* ¢
T(Z3) = (@*+ 1+ w)g -
Note that if ¢ is finite, then
(W*+ 1+ )¢ = (*+w)?,
and that
* 0 _

(W¥+1+w)y =1

Moreover, for any ordinals ¢ and 9,
(w*+1+w)g-(w*+1+w)0 (w*+1+w)¢+g

(see [2, p. 160, (5)]). If there exists a function mapping the ordering relation R iso-

morphically onto a subrelation of the ordermg relation S, we write RZS; if there is
no such isomorphism, we write RZS. If a = 7(R) and B = 7(8), we wr1te a¥?B or
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