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1. INTRODUCTION

This paper was written under the direction of G. R. MacLane, and it is the
author’s Ph.D. thesis at Rice University. Its main result is an extension of theo-
rems of Bagemihl and Seidel [3, Theorem 3] and MacLane [4, Theorem 11] on the
asymptotic values of a function f holomorphic in the unit disc. We say that f has
the asymptotic value a at ¢ ( | ¢ | = 1) if there exists a Jovdan arc that lies in
{Iz[ < 1}, except for the endpoint £, and on which £ has the limit a at €.

MacLane [4] considered the class .« of nonconstant holomorphic functions
having asymptotic values at a dense set of points on {|z| =1}. In particular, he
proved that if f € A and v is an arc of {I])zl = 1}, then eithev f has the asympto-
tic value ~© at a point of v ov f has point asymptotic values at points of a subset of
v of positive Lebesgue measuve. We shall prove a global version of this theorem
without the hypothesis f € . As corollaries we find that f either has the asympto-
tic value e or has point asymptotic values on a set of positive measure, and that an
f with only finitely many tracts for <« must either have only finitely many tracts or
have asymptotic values at points of a set of positive measure (for the definition of
the concept of a tract, see Section 2). Several related results are also obtained.

2. DEFINITIONS

The following notation will be used throughout this paper. Let D= {|z| <1}
and C = {|z| =1}. Let f be a function holomorphic in D. For any subset S of the
sphere, let

A(S) = {t € C: there exists a € S such that f has

the asymptotic value a at ¢ }
In particular, we let
A = A (the sphere), Aeo = A({=}), A* = A -A.

The Lebesgue measure and exterior Lebesgue measure (in [O, 27]) of a subset B of
C will be denoted by m(B) and m.(B). The interior of an arc ¥y C C will be denoted
by ¥°. ¥ A is a plane domain, dA will denote the boundary of A. The closure of a

set S in the plane will be denoted by S. Also, we write
{1£] > 2} = {z: |&=)| > r}.

Let a be a complex number, and suppose that for each € > 0, D(g) is a compo-
nent of {z: |f(z) - a| < £}; suppose further that D(g; ) C D(g;) (g; < &,) and
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