## NIL IDEALS IN GROUP RINGS

## D. S. Passman

Let R be a commutative ring having no nonzero nilpotent elements. We consider nil ideals in the group ring R[G]. In this paper conditions on G and R are found that ensure that Nil R[G], the upper nil radical of the group ring, is trivial. We also obtain necessary and sufficient conditions for the existence of nontrivial nilpotent ideals. In the particular case where R is a field K, the above results yield sufficient conditions on G and K for the semi-simplicity of the group algebra K[G]. These are similar to and, in fact, motivated by the results of S. A. Amitsur in [1] for fields of characteristic zero.

If there exists a positive integer  $\overline{m}$  with  $\overline{m}R=(0)$ , then we set  $ch\ R$ , the characteristic of R, equal to the smallest such positive integer. Otherwise,  $ch\ R=0$ . In the first case, let  $\pi(R)=\left\{p_1,p_2,\cdots,p_k\right\}$  be the set of prime divisors of  $m=ch\ R$ . Then since R has no nontrivial nilpotent elements, it is immediate that each prime occurs only to the first power. The integers  $m/p_1$ ,  $m/p_2$ ,  $\cdots$ ,  $m/p_k$  are relatively prime, so there is a linear sum

$$n_1 m/p_1 + n_2 m/p_2 + \cdots + n_k m/p_k = 1$$
.

This induces a decomposition

$$R = R_{p_1} + R_{p_2} + \cdots + R_{p_k}$$

of R as an internal direct sum of nonzero ideals, where

$$R_{p_i} = n_i m/p_i R = \{r \in R; p_i r = 0\}$$
.

Hence, for any group G,

$$R[G] = R_{p_1}[G] + R_{p_2}[G] + \cdots + R_{p_k}[G]$$

An ideal of the group ring is then nil or nilpotent if and only if its projection into each factor is. This effectively reduces all ch  $R \neq 0$  considerations to the prime case.

We say an element  $\sigma \in G$  is a p element if it is of order  $p^j$  for some j > 1.

THEOREM I. Let R be a commutative ring having no nonzero nilpotent elements. Suppose that  $ch R \neq 0$  and that G has no p elements for all  $p \in \pi(R)$ . Then Nil R[G] = (0).

First, we need a few lemmas. Let  $\Gamma$  be any ring. We write Comm  $\Gamma$  for the commutator of  $\Gamma$ , the set of all finite sums of elements of the form ab - ba with a, b  $\in \Gamma$ .

LEMMA 1. Let p be a prime, and let k and n be arbitrary positive integers. Then for all  $x_1, x_2, \cdots, x_n \in \Gamma$ ,

Received April 25, 1962.