ARITHMETICAL NOTES, VI. SIMULTANEOUS BINARY COMPOSITIONS INVOLVING COPRIME PAIRS OF INTEGERS

Eckford Cohen

1. INTRODUCTION

Let m, n denote positive integers, and let Q = Q(m, n) represent the number of sets of integers x_1, x_2, y_1, y_2 such that

(1.1)
$$m = x_1 + y_1, \quad n = x_2 + y_2, \quad x_i > 0, \quad y_i > 0 \quad (j = 1, 2),$$

subject to the restriction

$$(1.2) (x1, x2) = (y1, y2) = 1.$$

It is the object of this note to prove

THEOREM A. If $n \ge m$, then

(1.3)
$$Q(m, n) \sim mn \alpha(m, n) \quad as \quad m \to \infty,$$

where

(1.4)
$$\alpha(m, n) = \prod_{p \mid (m,n)} \left(1 - \frac{1}{p^2}\right) \prod_{p \neq (m,n)} \left(1 - \frac{2}{p^2}\right).$$

(Throughout this note, p stands for a prime.)

As a consequence of this result, one may obtain

THEOREM B. There exist positive constants A_1 , A_2 such that, when m and n are sufficiently large,

$$A_1 < Q(m, n)/mn < A_2$$
.

Theorem A is actually proved in a slightly stronger form (see Theorem 3.1). The proof is based on an elementary method similar to that employed by Mirsky in [3].

2. SOME LEMMAS

Let $\theta_p(m, n)$ denote the number of solutions (mod p) of

$$m \equiv x_1 + y_1, \ n \equiv x_2 + y_2 \pmod{p}, \quad p + (x_1, x_2), \ p + (y_1, y_2).$$

The following result is the special case r = p of [1, (8.8), Corollary 18.1].

Received October 26, 1961.