ISOMETRIC IMMERSION OF FLAT RIEMANNIAN MANIFOLDS IN EUCLIDEAN SPACE

Barrett O'Neill

1. INTRODUCTION

Let $\psi\colon M\to \overline{M}$ be an isometric immersion of Riemannian manifolds. If z is a tangent vector of \overline{M} , orthogonal to $d\psi(M_m)$, there is a classically defined second fundamental form operator S_z on the tangent space M_m . Following [1], we express the same information about ψ by associating with each vector $x\in M_m$ a linear operator T_x on $\overline{M}_{\psi(m)}$, called the difference operator of x. The function x is characterized by the fact that each x is skew-symmetric and x is equivalent to the relation x is a same meaning as above. The symmetry of x is equivalent to the relation x is equivalent to the relation x is equivalent to the relation x consisting of all vectors x such that x is an equivalent x is equivalent to x is equivalent to the relation x consisting of all vectors x such that x is equivalent to x is equivalent to x in x

We shall deal with the immersion $\psi\colon M^d\to R^{d+k}$ of a flat d-dimensional Riemannian manifold in (d+k)-dimensional Euclidean space. In this case the proof of Theorem 2 of [2] implies that for each point $m\in M$ there exists a vector $x\in \mathcal{N}^\perp(m)$ such that T_x is one-to-one on $d\psi(\mathcal{N}^\perp(m))$. Since the latter subspace has dimension $d-\nu(m)$, it follows that $k\geq d-\nu(m)$, so that the minimum relative nullity n of ψ is at least d-k. We shall prove

THEOREM 1. Let $\psi \colon M^d \to R^{d+k}$ be an isometric immersion of a complete flat Riemannian manifold in Euclidean space. Then M^d contains a totally geodesic submanifold that is carried isometrically onto an entire n-dimensional plane in R^{d+k} , where n is the minimum relative nullity of ψ .

The theorem is trivially true if n is zero, but since $n \geq d - k$ we can force n to be positive:

COROLLARY 1. If the hypotheses of Theorem 1 are satisfied and k < d, then the image of ψ contains a (d-k)-dimensional plane in R^{d+k} .

This implies the fundamental result of Tompkins [4] that a compact flat M^d cannot be isometrically immersed in R^{2d-1} . More generally, we have

COROLLARY 2. A complete flat Riemannian manifold M^d does not have a bounded isometric immersion in R^{2d-1} .

As with Tompkins' theorem, restrictions on dimension cannot here be weakened, for \mathbb{R}^d has bounded imbeddings in \mathbb{R}^{2d} , indeed, imbeddings whose images are as small as one likes: imbed \mathbb{R}^1 as, say, a small spiral in \mathbb{R}^2 , then take the d-fold Riemannian product.

For k=1, that is, for the case of a hypersurface, Hartman and Nirenberg have proved (Theorem III of [3]) that an isometric immersion of a complete flat M^d in R^{d+1} is cylindrical. In Theorem 2 we give a sufficient condition for such immersions to be cylindrical when k>1.

Received September 14, 1961.