ON ASYMMETRIC DIOPHANTINE APPROXIMATIONS

Ivan Niven

Our purpose is to give a brief proof of the following theorem of B. Segre [5].

Let τ be any non-negative real number. Every irrational number θ has infinitely many rational approximations h/k satisfying

(1)
$$-\frac{1}{(1+4\tau)^{1/2}k^2} < \theta - \frac{h}{k} < \frac{\tau}{(1+4\tau)^{1/2}k^2}.$$

Segre's proof was geometric in nature. C. D. Olds [3] gave a proof using Farey sequences for the cases $\tau > 1$. Proofs by continued fractions have been given by N. Negoescu [2] and R. M. Robinson [4]. W. J. LeVeque [1] showed that (1) holds for at least one of any five consecutive convergents of the continued fraction expansion of θ . We give a short proof of Segre's theorem, using Farey sequences.

LEMMA. Let θ be an irrational number, and let τ be any nonnegative real number. Let a/b and c/d be the two consecutive fractions of the Farey series F_n between which θ lies, and suppose that

$$\frac{a}{b} < \frac{a+c}{b+d} < \theta < \frac{c}{d}.$$

Then (1) holds with h/k replaced by at least one of a/b, (a + c)/(b + d), and c/d.

Proof. Define λ and μ by

$$\lambda = (1 + 4\tau)^{-1/2}$$
 and $\mu = \tau (1 + 4\tau)^{-1/2}$.

so that $\mu = (1 - \lambda^2)/4\lambda$ and $0 < \lambda \le 1$. Assuming that the conclusion of the lemma is false, we can write

(3)
$$\theta - \frac{a}{b} \ge \frac{\mu}{b^2}, \quad \theta - \frac{a+c}{b+d} \ge \frac{\mu}{(b+d)^2}, \quad \frac{c}{d} - \theta \ge \frac{\lambda}{d^2}.$$

Adding the first and third of these inequalities, and also the second and third, we obtain the relations

$$\frac{c}{d} - \frac{a}{b} = \frac{1}{bd} \ge \frac{\mu}{b^2} + \frac{\lambda}{d^2}$$

$$\frac{c}{d} - \frac{a+c}{b+d} = \frac{1}{d(b+d)} \ge \frac{\mu}{(b+d)^2} + \frac{\lambda}{d^2},$$

in other words.

(4)
$$\lambda b^2 - bd + \mu d^2 \le 0$$
, $\lambda (b + d)^2 - d(b + d) + \mu d^2 \le 0$.

Received January 2, 1962.

Research supported in part by National Science Foundation Grant G-19016.