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1. INTRODUCTION

A transformation f of a set I into itself is said to be finite if and only if f(x) = x
for all but finitely many elements x of I. Under the operation of composition the
set F(I) of all finite transformations of I into itself is a semigroup having the iden-
tity map id; as its identity element. As generators for F(I) we may take all the
transpositions (%, y) and replacements (x/y) with x, y €I and x # y. Here (x/y) is
the transformation that maps y onto x and leaves all the other elements of I fixed,
while (X, y) is of course the permutation that interchanges x and y, leaving all the
other elements fixed. By an elemeniary ivansformation we shall mean a transforma-
tion that is either a transposition or a replacement.

The purpose of this paper is to give a set of defining relations for F(I), taking
the set of all elementary transformations as a generating set. The reason for taking
this generating set rather than a smaller irredundant one is that the individual de-
fining relations can then be given in a simple form particularly convenient for appli-
cations. This is illustrated in Section 4, where we outline a new proof of a theorem
of Galler [1] concerning the relation between cylindric algebras and polyadic
algebras.

2. CANONICAL REPRESENTATIONS

We consider a fixed set I consisting of at least three elements. By an elemen-
tary sequence we mean a finite sequence whose terms are elementary transforma-
tions. If a= {ag, ay, ***, a5_1 ) is an elementary sequence, then we let

a’” =agaj---an_1.

By a vepresentation of a member f of F(I) we mean an elementary sequence a with
f=aT.

Since the set of all elementary transformations obviously generates F(I), every
finite transformation f of I has a representation. We shall now single out certain
representations of f that will be referred to as canonical representations. This con-
cept is motivated by the consideration of the directed graph whose vertices are the
elements of I and whose edges are in one-to-one correspondence with the elements
of I in such a way that, for each x in I, the corresponding edge has x as its initial
vertex and f(x) as its terminal vertex. Let J be the set of all members x of I such
that fP(x) = x for some positive integer p. Clearly f maps J onto itself, and the
restriction f' of f to J is a finite permutation. The graph of f' therefore consists
of pairwise disjoint cycles, of which all but finitely many are degenerate, consisting
of just one vertex.
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