A GENERALIZATION OF A CONTINUOUS CHOICE FUNCTION THEOREM

J. W. Jaworowski

1. Many applications of the Vietoris Mapping Theorem are known (see, for example, [2] and references in that paper). We give another such application concerning multi-valued functions defined on sets of hyperplanes in Euclidean space. Our theorem generalizes a certain known theorem on continuous choice functions. A special case of the theorem of the present paper was first proved in a different way by A. Kosinski, who subsequently proved a still more general theorem which will be published in [3].

We recall some of the simplest concepts concerning multi-valued functions. A multi-valued function $F: X \to Y$, where X and Y are topological spaces, is a function which assigns to each point $x \in X$ a non-empty subset F(x) of Y. The set

$$\Gamma(F) = \{(x, y): y \in F(x)\} \subset X \times Y$$

is called the graph of F.

Let X be a compact space. Then a multi-valued function $F: X \to Y$ is said to be *continuous* if the graph $\Gamma(F)$ is compact. If Y is compact, this condition is equivalent to the upper semi-continuity of F, when F is regarded as a single-valued mapping of X into the hyperspace of non-empty compact subsets of Y. If F is single-valued, then the above notion of continuity is equivalent to the continuity of a single-valued function in the ordinary sense.

2. We shall use the reduced Čech homology groups $H_k(X)$ of a compact space X with coefficients modulo 2. The space X is called *acyclic* if it is non-empty and if $H_k(X) = 0$ for every k > 0. A multi-valued function $F: X \to Y$ is said to be *acyclic* if the sets F(x) are acyclic for every $x \in X$.

VIETORIS MAPPING THEOREM. Let X and Y be compact spaces, and let $f: X \to Y$ be a continuous (single-valued) mapping such that $f^{-1}(y)$ is acyclic for every $y \in Y$. Then f induces an isomorphism $f_*: H_k(X) \approx H_k(Y)$ for every $k = 0, 1, 2, \cdots$ (see [1] and [2], Nr. 3).

3. Let \mathscr{H}_m^n denote the set of all m-dimensional hyperplanes in Euclidean n-dimensional space E^n (m < n) that pass through a fixed point (the origin). For each m-dimensional hyperplane $H \in \mathscr{H}_m^n$, denote by H^* the (n - m)-dimensional hyperplane that passes through the origin and is orthogonal to H.

THEOREM. Let F be a multi-valued continuous acyclic function which assigns to each hyperplane $H \in \mathcal{H}_m^n$ a subset F(H) of E^n . Then there exists a hyperplane $H_0 \in \mathcal{H}_m^n$ such that $F(H_0)$ intersects H_0^* .

Proof. Evidently it is sufficient to prove this theorem for the case when m = n - 1. Then the set \mathcal{H}_{n-1}^n is the (n-1)-dimensional projective space P^{n-1} . Let S^{n-1} be the unit (n-1)-dimensional sphere in E^n with its center at the origin,

Received August 15, 1961.