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1. In the sequel only bounded (linear) operators A, B, --- on a Hilbert space of
elements x, y, --- will be considered. For any such operator A, let W = W(A) de-
note the closure of the set of complex numbers (Ax, x) with ”x” x, )¥2=1. It
is known that W is a bounded convex set containing sp(A), the spectrum of A, and
that in case A is normal, W is the least closed convex set containing sp(A) (Haus—
dorff, Toeplitz); see, for example [4], pp. 34 ff. An operator A will be called non-
singular (invertible) if it possesses a unique right (hence, a unique left) bounded in-
verse A™!. In case A and B are nonsingular, let D = ABA-! B~!, the group com-
mutator of A and B. It will be supposed throughout this paper that A commutes
with D, so that

(1) AD = DA, D=ABA-1B-!,

It is known that if, in addition to (1), A and B are finite-dimensional unitary matrices
and if the spectrum of B is contained in some open semicircle on the circle |z| =1,
then necessarily D = I, that is, AB = BA; see [2, Theorem 197}, also [3]. In the pres-
ent paper various generalizations of this result will be obtained; in particular it will
be shown that the restriction that A and B be finite matrices can be removed.

Since, when B is unitary, the above assumption concerning sp(B) is equivalent to the
condition that 0 fails to belong to the set W(B), it is clear that the earlier assertion
for the case where A and B are finite-dimensional and unitary is contained in

(I) Let A and B be unitary (so that D = ABA-*B~?! is unitary) and satisfy (1).
Then either AB = BA ov 0 belongs to the set W(B).

If N is any nonsingular normal operator, it is easy to see that 0 belongs to the
set W(N) if and only if 0 belongs to the set W(N-!). Consequently, (I) is seen to be
a consequence of the more general result

(II) Let A be unitary, and let B be an arbitrary nonsingulayr opevator satisfying
(1). Then at least one of the following cases must hold: (i) sp(D) = 1 only, or (ii) 0
belongs to W(B), or (iii) 0 belongs to W(B™Y).

2. Proof of (). Suppose that z belongs to sp(D); then, as m — o,
(2) either (D - z)x,,— 0 or (D*-z)x,,—0,

for some sequence of elements x,,, satisfying |x,,[ = 1. It will be shown that if
z # 1, that is, if (i) fails to hold, condition (2) implies that either (ii) or (iii) of (II)
must hold.

It is seen from DB = ABA-! and an application of (1) that D®B = A2BA~2 and, in
general, that
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