## THE TOPOLOGICAL STRUCTURE OF TRAJECTORIES

## John Gary

## 1. INTRODUCTION

Let  $V_n$  be a connected differentiable manifold of class  $C^r$   $(r \ge 1)$ , and let X(x,t)  $(x \in V_n, t \in E_1)$  define a field of tangent vectors on  $V_n \times E_1$ . We shall always assume that X(x,t) is of class  $C^r$   $(r \ge 1)$ . Thus we have a system of equations,

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \mathrm{X}(\mathrm{x}, \ \mathrm{t}) \ .$$

If x(t) is a solution of these equations, we call the curve  $(x(t), t) \subset V_n \times E_1$  a *trajectory*. We consider only maximal trajectories; that is, the function x(t) is defined for a < t < b, where the interval (a, b) is maximal (a or b may be infinite).

Lefschetz has defined the general solution of a system of equations [1, p. 39]. We shall give a second definition and analyze the relation of these general solutions to the topological structure of the space of trajectories.

## 2. DIFFERENTIAL SYSTEMS WHICH ADMIT A SECTION

Definition 2.1. A section for a differential system on  $V_n \times E_1$  is a manifold  $V_n'$ , together with a homeomorphism f of  $V_n'$  into  $V_n \times E_1$ , with the property that  $f(V_n')$  meets each trajectory exactly once.

THEOREM 2.2. Assume we are given a differential system defined by a function X(x,t) on  $V_n \times E_1$ . The trajectories of this system form a decomposition of  $V_n \times E_1$  into closed sets. Let V be the space obtained by the identification of each trajectory to a single point. If V is a Hausdorff space, then V is an n-dimensional manifold. If X(x,t) and  $V_n$  are of class  $C^m$ , then V is of class  $C^m$  (m>1).

*Proof.* Let  $p: V_n \times E_1 \to V$  be the mapping induced by the identification. Let  $\{N_i\}$  be a countable collection of n-cells which form a basis for the topology of  $V_n$ , and  $\{I_j\}$  a collection of 1-cells which form a basis for  $E_1$ . Then the collection  $\{N_i \times I_j\}$  is a basis for  $V_n \times E_1$ . Choose  $t_j \in I_j$  and let  $f_{ij} \colon N_i \to N_i \times t_j$  be defined by  $f_{ij}(x) = (x, t_j)$ . Let  $g_{ij} \colon N_i \to V$  be defined by  $g_{ij} = p(f_{ij}(x))$ , and define  $U_{ij} = g_{ij}(N_i)$ . Then  $p^{-1}(U_{ij})$  is the set of all points which lie on a trajectory passing through  $N_i \times t_j$ . Thus  $p^{-1}(U_{ij})$  is open in  $V_n \times E_1$ , and  $U_{ij}$  is open in V [1, p. 52]. If U is an open set in V and  $y \in U$ , then there exists a cell  $N_i \times I_j$ , contained in  $p^{-1}(U)$ , with the property that  $p^{-1}(y)$  meets  $N_i \times t_j$ . Then  $y \in U_{ij}$  and  $U_{ij} \subset U$ . Thus, the collection  $\{U_{ij}\}$  is a basis for the topology of V. The mappings  $g_{ij}$  are one-to-one, and the  $g_{ij}^{-1}$  are continuous, since the  $g_{ij}$  are open.

Now assume that X(x, t) is of class  $C^m$ . Then the solution  $x(t, x_0, t_0)$ , where  $x(t_0, x_0, t_0) = x_0$ , is of class  $C^m$  in  $(x_0, t_0)$ . We must show that

$$\mathrm{g}_{\mathrm{pq}}^{-1}\mathrm{g}_{\mathrm{ij}}^{-1};\,\mathrm{g}_{\mathrm{ij}}^{-1}(\mathrm{U}_{\mathrm{ij}}\cap\mathrm{U}_{\mathrm{pq}})\,\rightarrow\,\mathrm{g}_{\mathrm{pq}}^{-1}(\mathrm{U}_{\mathrm{ij}}\cap\mathrm{U}_{\mathrm{pq}})$$

Received October 7, 1959.