ESTIMATE OF A CERTAIN LEAST COMMON MULTIPLE

D. J. Newman

Suppose that N_1 , N_2 , \cdots are positive integers (not necessarily distinct) such that $\sum 1/N_i = 1$. If we impose the restriction that $N_i \leq N$ for all i, how large can lcm $[N_1, N_2, \cdots]$ be?

Clearly, by choosing $N_i=N$ (i = 1, 2, ..., N), we obtain lcm = N; and on the other hand, the inequality lcm $[N_i] \leq$ lcm $[1, 2, ..., N] \leq$ N! always holds. If we let $\Phi(N)$ denote the maximum of this \overline{lcm} , then these remarks imply that $N \leq \Phi(N) \leq N!$. This trivial inequality leaves a wide gap in our knowledge of $\Phi(N)$, and it is our purpose to narrow the gap. It is fairly easy to strengthen the inequality to

$$C_1 N^2 \le \Phi(N) \le e^{C_2 N}$$
,

for example; but this improvement is slight. Our result is as follows.

THEOREM.

$$\log \Phi(N) \sim \frac{N}{\log N}$$
.

Remarks. To obtain this precision, we need the prime number theorem $\pi(x) \sim x/\log x$, and its equivalent forms,

$$\log \prod_{p \leq x} p \sim x$$
, $\log \operatorname{lcm} [1, 2, \dots, n] \sim n$.

Depending on the reader's taste, this may or may not be "elementary;" at any rate, our method also gives

$$\frac{C_1 N}{\log N} < \log \Phi(N) < \frac{C_2 N}{\log N},$$

using only the Tchebychev estimates of $\pi(x)$.

The proof splits into two portions:

I. If $\epsilon>0$ and N is large, then the conditions $N_i\leq N$ and $\Sigma 1/N_i=1$ imply that

$$lcm[N_i] < e^{(1+3\varepsilon)N/\log N}$$
.

II. If $\epsilon>0$ and N is large, then there exist $N_i \leq N$ with $\Sigma \, 1\!/\, N_i$ = 1 and

$$lcm[N_i] > e^{(1-3\epsilon)N/log N}$$
.

Proof of I. The N_i are given with the required properties. Let S be the set of primes p which divide some N_i and such that $p \geq (1 + 2\epsilon)N/\log N$; and for p in S,

Received November 23, 1959.