A NOTE ON MATRIX COMMUTATORS

D. W. Robinson

The problem of representing a given matrix as a matrix commutator has received attention from several authors. (See for example [1], [5], [6], or [7].) Motivated by a recent paper of I. N. Herstein [2], this note provides necessary and sufficient conditions for representing a given nonsingular matrix as a multiplicative commutator $ABA^{-1}B^{-1}$ such that the additional condition A(AB - BA) = (AB - BA)A is satisfied.

LEMMA. Let D be a nonsingular n-by-n matrix over a field F of characteristic zero or prime p > n. Then there exist nonsingular matrices A and B over F such that D = ABA⁻¹B⁻¹ and A(AB - BA) = (AB - BA)A if and only if D - I is nilpotent.

Necessity. The necessity of this condition is a restatement of a theorem proved by C. R. Putnam and A. Wintner [3] for fields of characteristic zero and by I. N. Herstein [2] for fields of prime characteristic p > n.

Sufficiency. Let D - I be nilpotent. Since D - I is similar to a direct sum of matrices, each nilpotent of index equal to its order, it is clearly sufficient to prove the result for the n-by-n matrix D - I that is nilpotent of index n. Furthermore, without loss of generality, let D = (d_{ij}) , where $d_{ij} = \delta_{ij} + \delta_{i,j-1}$, be in classical canonical form.

Let $A=(a_{ij})$, where $a_{ij}=\binom{j}{i}$ for $i\leq j$ and $a_{ij}=0$ otherwise. By matrix multiplication and by the addition properties of binomial coefficients, it is easily shown that $A(2I-D)=(a_{i-1,j-1})$ and that DA(2I-D)=A. Hence $D^{-1}A=A(2I-D)$ and $A(D-I)=(I-D^{-1})A$. By the restriction on the characteristic of the field, it is evident that none of the elements $a_{k-1,k}=k$ of the first superdiagonal of either A or $D^{-1}A$ are zero. Hence, both A-I and $D^{-1}A-I$ are nilpotent of index n, and this implies that A and $D^{-1}A$ are similar. Thus, there is a nonsingular matrix B such that $D^{-1}A=BAB^{-1}$, and since A is nonsingular, $D=ABA^{-1}B^{-1}$. Finally,

$$A(AB - BA) = A(ABA^{-1}B^{-1} - I)BA = A(D - I)BA = (I - D^{-1})ABA$$

= $(I - BAB^{-1}A^{-1})ABA = (AB - BA)A$.

The preceding proof suggests the following theorem.

THEOREM. Let D be a nonsingular n-by-n matrix over a field F other than the field of two elements. Then there exist nonsingular matrices A and B over F such that $D = ABA^{-1}B^{-1}$ and A(AB - BA) = (AB - BA)A if and only if D - I is similar to $I - D^{-1}$.

Necessity. Let
$$D = ABA^{-1}B^{-1}$$
 and $A(AB - BA) = (AB - BA)A$. Then
$$A(D - I) = A(ABA^{-1}B^{-1} - I) = A(AB - BA)A^{-1}B^{-1} = (AB - BA)AA^{-1}B^{-1}$$
$$= (AB - BA)B^{-1}A^{-1}A = (I - BAB^{-1}A^{-1})A = (I - D^{-1})A.$$