TRANSFORMATION GROUPS ON A K(w, 1), I

P. E. Conner and D. Montgomery

1. INTRODUCTION

The purpose of this note is to give some results on transformation groups and
fiberings for a finite-dimensional Eilenberg-MacLane space K(m, 1), a space whose
one-dimensional homotopy group is 7 and whose remaining homotopy groups vanish.
The Eilenberg-MacLane spaces are discussed in [1], and are treated completely in
[2]. We are interested here only in the most elementary facts about K(w, 1) and
K(m, 2). Eilenberg and Ganea [3] have pointed out that the existence of a finite-
dimensional K(w, 1) for a given group 7 is an intrinsic algebraic property of =.

We were led to this topic by several considerations. For one thing, a special
case of transformation groups on a finite-dimensional K(w, 1) is quite classical;
namely, the study of transformation groups on closed Riemann surfaces of positive
genus. Theorem 5.1 contains a generalization of H. A. Schwarz’ theorem that no
closed Riemann surface of genus larger than 1 can admit a 1-parameter family of
complex analytic transformations. The theorem of Montgomery and Samelson [5] to
the effect that the only compact connected Lie group which is transitive and effective
on a torus is a toral group led us to conjecture and prove that the assumption of
transitivity could be dropped. Paul Smith proved that the fixed point set of a cyclic
transformation group of prime order p acting on a sphere has the mod p homology
groups of a lower-dimensional sphere. In Theorem 3.4 we show that the fixed point
set of a cyclic transformation of prime order on a K(#, 1) also inherits the mod p
homology characteristics of the K(m, 1). We feel that Smith’s theorem and our
Theorem 3.4 are but the two extreme cases of some general relation between the
homotopy groups of a space and the cyclic transformations of prime order on that
space. This is the real motive for the present note, namely, to initiate the develop-
ment of extensive relations between homotopy groups and cyclic transformations.

We show that if a finite-dimensional K = K(w, 1) is fibered by a connected fiber
F with base B, then F is a K(7,(F), 1) and B is a K(7,(B), 1). Our principal result
concerns those compact manifolds that are aspherical; that is, K(w, 1)-spaces that
are compact manifolds. We prove that if a compact connected Lie group acts effec-
tively on such a manifold, then the group is a toral group; moreover, this group must
act freely, and if 7 is abelian, there is a cross section in the large. Hence, the ac-
tion might be called a product action.

The K(w, 1)-spaces are assumed to be connected, locally compact, finite-
dimensional ANR’s. In this note we use the Alexander-Wallace-Spanier cohomology
(AWS-cohomology). We denote a discrete group by w, a topological group operating
on a space by (G, X), and the natural projection of X onto the orbit space X/G by

p: X —X/G.
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