ON SOME METRIC PROPERTIES OF POLYNOMIALS WITH REAL ZEROS

Ch. Pommerenke

1. Let $f(z) = \prod_{\nu=1}^{n} (z - x_{\nu})$ be a polynomial of degree n with real zeros x_{ν} , and let E be the set $|f(z)| \leq 1$. The real axis is denoted by X. A circle (semicircle) that has a segment of X as diameter will be called an orthogonal circle (semicircle).

LEMMA. Let L be an orthogonal semicircle over the real points a_1 and a_2 . If $z_0 \in E \cap L$ and $\Im z_0 > 0$, then either the arc $a_1 z_0$ or the arc $z_0 a_2$ of L is contained in E.

Proof. (I owe the idea of this argument to [1, p. 139].) If $x_1 = \cdots = x_n = 0$, the lemma is trivially true. Therefore we can assume that not all of these equations hold. We may take $a_1 = -\rho$, $a_2 = \rho$. Then we have L: $z = \rho e^{i\theta}$ ($0 \le \theta \le \pi$). Consider the function

$$G(\theta) = \log \left| f(\rho e^{i\theta}) \right| = \frac{1}{2} \sum_{\nu=1}^{n} \log \left(\rho^2 - 2\rho x_{\nu} \cos \theta + x_{\nu}^2 \right)$$

for $0 < \theta < \pi$. Its derivative is

$$G'(\theta) = \rho \left(\sin \theta\right) H(\theta), \quad \text{where } H(\theta) = \sum_{\nu=1}^{n} \frac{x_{\nu}}{\rho^2 - 2\rho x_{\nu} \cos \theta + x_{\nu}^2}.$$

Differentiating $H(\theta)$, we obtain

$$H'(\theta) = \sum_{\nu=1}^{n} \frac{-\rho x_{\nu}^{2} \sin \theta}{(\rho^{2} - 2\rho x_{\nu} \cos \theta + x_{\nu}^{2})^{2}} < 0$$

for $0 < \theta < \pi$. Hence $G'(\theta) = \rho (\sin \theta) H(\theta)$ has at most one zero σ in $0 < \theta < \pi$. The relation

$$G''(\sigma) = \rho(\cos \sigma) H(\sigma) + \rho(\sin \sigma) H'(\sigma) = \rho(\sin \sigma) H'(\sigma) < 0$$

shows that $G(\theta)$ has a maximum in σ . Therefore the function $G(\theta)$ does not assume a minimum in $0 < \theta < \pi$. Put $z = \rho e^{i\theta}$. We have to consider three cases:

- 1. G(0) > 0. Since the function $G(\theta)$ has no minimum in $0 < \theta < \pi$, the inequality $G(\theta_0) \le 0$ implies that $G(\theta) \le 0$ for $\theta_0 \le \theta \le \pi$. Therefore the arc $a_1 z_0$ of L belongs to E.
- 2. $G(\pi) > 0$. We can show in a similar way that the arc $z_0 a_2$ of L is contained in E.
- 3. $G(0) \leq 0$, $G(\pi) \leq 0$. If neither $a_1 z_0$ nor $z_0 a_2$ were contained in E, there would be two values θ_1 and θ_2 such that $0 < \theta_1 < \theta_0 < \theta_2 < \pi$ and $G(\theta_1) > 0$,

Received July 7, 1959.