A GENERALIZED MANIFOLD

Kyung Whan Kwun

INTRODUCTION

While generalized manifolds share many of the properties of classical manifolds, there has been a general question: How far can a generalized manifold get away from classical manifolds? In particular, it does not seem to have been settled whether or not there exists a generalized manifold that is not locally euclidean at any point. A generalized manifold that fails to be locally euclidean at a single point can easily be obtained by shrinking a bad arc in S³ to a point [3]. This being the case, one readily suspects that a generalized manifold that is not locally euclidean at any point can be obtained by putting bad arcs densely in S³ and shrinking each to a point. In the present note, we show that this is indeed the case. In the course of the construction, however, care must be taken so that the decomposition space is still a Hausdorff space and is also finite-dimensional. The first requirement is fulfilled if we put in arcs such that the arcs together with the points not on any of the arcs form an upper-semicontinuous decomposition (see [8] for definition) of S³.

1. THE CONSTRUCTION OF AN UPPER-SEMICONTINUOUS DECOMPOSITION G

We denote by E^3 and S^3 the euclidean 3-space and 3-sphere, respectively. By a 3-cell we mean a homeomorph of the unit sphere together with its interior in E^3 . By the boundary and the interior of a 3-cell we mean the parts that correspond to the unit sphere and its interior, and they will be denoted, sometimes, by Bd and Int, respectively.

It is known [4] that there exists an arc A in E^3 such that E^3 - A is not simply connected. It is easy to see that such an A can be put into any pre-assigned open subset of E^3 .

Let $\mathfrak{U}_{1}^{0}=\left\{ U_{1}^{0},\,U_{2}^{0},\,\cdots,\,U_{k_{0}}^{0}\right\}$ be an open covering of S^{3} such that each U_{i}^{0} is the interior of a 3-cell \overline{U}_{i}^{0} of diameter less than 1. Let F^{0} be the union of Bd U_{i}^{0} . In each U_{i}^{0} , we can find an arc A_{i}^{0} such that (1) the arcs A_{i}^{0} are pairwise disjoint, (2) each A_{i}^{0} is situated in U_{i}^{0} in the same manner as A is in E^{3} , and (3) no A_{i}^{0} meets F^{0} . There exists a positive number $d_{i}<1/2$ such that no $3d_{i}$ -neighborhood of any A_{i}^{0} meets F^{0} or any other A_{i}^{0} .

Let $\mathfrak{U}_1^1=\left\{U_1^1,\,U_2^1,\,\cdots,\,U_{k_1}^1\right\}$ be an open overing of S^3 such that each U_i^1 is the interior of a 3-cell \overline{U}_i^1 of diameter less than d_i . Let F^1 denote the union of the Bd U_i^1 . In each U_i^1 , we can find an arc A_i^1 such that (1) the arcs A_p^0 and A_q^1 are pairwise disjoint, (2) each A_i^1 is situated in U_i^1 in the same way as A is in E^3 , and (3) no A_i^1 meets F^0 or F^1 . There exists a positive number $d_2<\min(d_1,1/4)$ such that no $3d_2$ -neighborhood of any A_p^0 or A_q^1 meets any other $A_{p^1}^0$ or $A_{q^1}^1$ and no $3d_2$ -neighborhood of A_q^1 meets F^0 or F^1 .

Received May 7, 1959.