ON ISOMORPHISMS OF ORDERS

D. G. Higman

1. INTRODUCTION

Let there be given a commutative ring $\mathfrak o$ with identity element, and an $\mathfrak o$ -algebra $\mathfrak O$. As in [2], we denote by $I(\mathfrak O)$ the ideal consisting of the elements of $\mathfrak o$ which annihilate the cohomology groups $H^1(\mathfrak O,T)$ for all two-sided $\mathfrak O$ -modules T (cohomology being taken in the sense of $\mathfrak o$ -algebras [1, Chapter IX]). There is a reduction theorem [1] stating that for n>1, $H^n(\mathfrak O,T)=H^{n-1}(\mathfrak O,T')$ for a suitable two-sided $\mathfrak O$ -module T'. Hence $H^n(\mathfrak O,T)$ is annihilated by $I(\mathfrak O)$ for all n>0.

In case $\mathfrak o$ is an integral domain with quotient field k, an $\mathfrak o$ -algebra $\mathfrak O$ is called an $\mathfrak o$ -order if it is finitely generated and torsion-free as an $\mathfrak o$ -module. We shall call an $\mathfrak o$ -order $\mathfrak O$ separable if its k-hull $\mathfrak O \bigotimes_{\mathfrak o}$ k is a separable k-algebra; a necessary and sufficient condition for this is that $I(\mathfrak O)$ be different from $I(\mathfrak O)$ is a group ring of a finite group of order $I(\mathfrak O)$ = $I(\mathfrak O)$ =

If \mathfrak{o} is the valuation ring and \mathfrak{p} the prime ideal of a field k with a discrete valuation, every non-zero ideal is a power of \mathfrak{p} , and therefore, for a separable \mathfrak{o} -order \mathfrak{D} , $I(\mathfrak{D}) = \mathfrak{p}^s$ with s > 0. We call s the *depth* of \mathfrak{D} .

Two $\mathfrak o$ -orders are called *isomorphic* if there is an $\mathfrak o$ -algebra isomorphism of the one onto the other. The purpose of this note is to prove the

THEOREM. Let $\mathfrak o$ be the valuation ring and $\mathfrak p$ the prime ideal of a field k complete with respect to a discrete valuation. A separable $\mathfrak o$ -order $\mathfrak O$ is isomorphic with an $\mathfrak o$ -order $\mathfrak O$ if and only if the $\mathfrak o/\mathfrak o$ $\mathfrak p^{2s+1}$ -algebras $\mathfrak O/\mathfrak p^{2s+1}$ $\mathfrak O$ and $\mathfrak O/\mathfrak p^{2s+1}$ $\mathfrak O$ are isomorphic.

Our proof is simplified following a suggestion of the referee. The theorem reduces the problem of isomorphism of orders over complete, discrete valuation rings having finite residue class rings to a problem concerning finite algebras. Thus an immediate consequence is the

COROLLARY 1. If o as in the Theorem has finite residue class rings, there are only finitely many non-isomorphic separable o-orders of given finite rank and depth.

A second corollary, concerning *genera* of orders in a separable algebra over the quotient field of a Dedekind domain \mathfrak{o} , is given. Here two \mathfrak{o} -orders are put in the same genus if their \mathfrak{p} -adic completions are isomorphic for each prime \mathfrak{p} of \mathfrak{o} .

2. PROOF OF THE THEOREM

We are assuming that $\mathfrak o$ is the valuation ring and $\mathfrak p$ the prime ideal of a field k with a complete discrete valuation. Since the valuation ring $\mathfrak o$ is a principal ideal domain, the $\mathfrak o$ -orders $\mathfrak O$ and $\mathfrak O$ have free $\mathfrak o$ -module bases. Hence an isomorphism $\mathfrak O/\mathfrak p^{2s+1}\mathfrak O \approx \mathfrak O/\mathfrak p^{2s+1}\mathfrak O$ is induced by an $\mathfrak o$ -module isomorphism $\alpha \colon \mathfrak O \approx \mathfrak O$ such that

(1)
$$\alpha(xy) \equiv \alpha(x) \alpha(y) \pmod{\mathfrak{p}^{2s+1}}.$$

Received October 30, 1958.