THE CONSTRUCTION OF HADAMARD MATRICES

E. C. Dade and K. Goldberg

An Hadamard matrix H is a (1, -1)-matrix of order 4n such that

$$HH^{T} = 4nI_{4n},$$

where I_{4n} is the identity matrix of order 4n. The result of this paper is as follows.

THEOREM. An Hadamard matrix of order 4n can be constructed if there exists a transitive permutation group of degree 4n-1 and odd order whose subgroups leaving one element fixed have three transitivity sets each.

Suppose we can find a (0, 1)-matrix A of order 4n - 1 satisfying

(2)
$$A A^{T} = n I + (n - 1) J,$$

where I is the identity matrix, and J is the matrix with 1 in every position, of order 4n - 1. Then the bordered matrix

$$H = \begin{pmatrix} & 1 & 1 & \cdots & 1 \\ & 1 & & & \\ & \cdot & & & \\ & \cdot & & 2A - J & \\ & \cdot & & & \\ & 1 & & & \end{pmatrix}$$

satisfies (1). We shall prove that, given the permutation group of the theorem, we can construct a matrix A satisfying (2).

Let G be the permutation group of the theorem, and suppose it permutes the integers 1, 2, \cdots , 4n - 1. For each g in G, let P(g) be the permutation matrix of order 4n - 1 with 1 in the (i, j)-position if i = g(j).

Let \mathscr{A} be the algebra of matrices of order 4n-1 which commute with every P(g). If (x_{ij}) is any such matrix, then

$$(x_{ij}) = P(g)^{-1} (x_{ij}) P(g) = (x_{g(i)g(j)})$$
 (all $g \in G$),

and therefore (x_{ij}) is characterized by

(3)
$$x_{ij} = x_{g(i)g(j)}$$
 (all i, j = 1, 2, ..., 4n - 1 and all $g \in G$).

The equivalence

Received July 18, 1958.