SOME REMARKS ON FUNDAMENTAL SOLUTIONS OF PARABOLIC DIFFERENTIAL EQUATIONS OF SECOND ORDER

E. H. Rothe

1. INTRODUCTION

Let E^n be the real n-dimensional Euclidean space of points $x = (x_1, \dots, x_n)$, and $D \subset E^n$ an open simply connected domain. Let

(1.1)
$$L(u) = \sum_{i,k=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ik} \frac{\partial u}{\partial x_k} \right) - V(x)u \qquad (a_{ik} = a_{ki}, \ V \ge 0)$$

be a uniformly elliptic operator in D with coefficients depending on x. Let I_T be the interval 0 < t < T, and \triangle_T the product $D \times I_T$. A fundamental solution of the parabolic equation

(1.2)
$$\Lambda = L(u) - \frac{\partial u}{\partial t} = 0$$

in $\triangle = \triangle_{\infty}$ may be defined as a function $\Gamma(x, \xi, t)$ which as function of (x, t) satisfies (1.2) in \triangle , and in addition has the following property: for each function h(x) which is continuous in the closure \overline{D} of D and for each (proper or improper) subdomain D_1 of D, the limit relation

(1.3)
$$\lim_{t\to 0} \int_{D_1} h(\xi) \Gamma(x, \xi, t) d\xi = \begin{cases} h(x) & \text{for } x \text{ interior to } D_1, \\ 0 & \text{for } x \text{ interior to } D - D_1 \end{cases}$$

holds [19], [6], [7].

It is known that if D is bounded and has a smooth enough boundary \dot{D} , then such a fundamental solution may be constructed as follows: let $\{u_1(x), u(x), \cdots\}$ be a full orthonormal set of eigenfunctions, and $\{-\lambda_1, -\lambda_2, \cdots\}$ the set of corresponding eigenvalues of the elliptic eigenvalue problem

$$L(u) - \lambda u = 0 \quad \text{in } D,$$

(1.5)
$$u = 0$$
 on \dot{D} ;

then

(1.6)
$$G(x, \xi, t) = \sum_{k=1}^{\infty} u_k(x) u_k(\xi) e^{-\lambda_k t}$$

Received October 8, 1958.

This paper was written while the author was recipient of a John Simon Guggenheim Memorial Fellowship.