GROUPS ON Rⁿ OR Sⁿ

Deane Montgomery

1. INTRODUCTION

Throughout this paper G will be a compact connected Lie group acting on a manifold M which is either R^n or S^n , that is, euclidean n-space or the n-sphere. Furthermore the group is assumed to act differentiably, by which is meant that each homeomorphism of M is of class C^1 in the ordinary differentiable structure of M. The space M is divided into certain disjoint subsets as follows. If r is the highest dimension of any orbit, let B be the set of points on orbits of dimension less than r. The set B is closed, and it is known [1] that dim $B \le n - 2$. Let D be the set of points x satisfying

- a) dim G(x) = r,
- b) in every neighborhood of x there is a point y such that G_y , the isotropy group at y, has fewer components than G_x .

Any orbit in D is called an exceptional orbit of highest dimension. Near such an orbit G(x), there is another highest-dimensional orbit G(y) which "wraps around" G(x) more than once.

Let U be the set of all points on orbits of highest dimension which are not in D. Then $x \in U$ if and only if

- a) dim G(x) = r,
- b) for all y in some neighborhood of x, G_x and G_y have the same number of components.

The sets B, D, U are invariant and disjoint, and

$$M = B \cup D \cup U$$
;

B is closed, $B \cup D$ is closed, and U is open. For the case at hand [2],

dim
$$D < n - 2$$
.

The orbits of M can be made into a space M^* , called the orbit space; and M^* contains the disjoint sets B^* , D^* , U^* which are the images of B, D, U under the map from M to M^* . The map from M to M^* is denoted by T.

This paper studies some of the properties of these sets, and it proves the following theorems.

THEOREM 1. Let a compact connected Lie group G act differentiably on $M=R^n$ or S^n . Then $U^*\cup D^*$ is simply connected.

COROLLARY. Under the hypothesis of Theorem 1, let dim $D \le n - 3$. Then U^* is simply connected.

Received July 29, 1958.