A NOTE ON THE SYSTEM GENERATED BY A SET OF ENDOMORPHISMS OF A GROUP

W. E. Deskins

The study of a set $\mathfrak E$ of endomorphisms of a group G has been limited generally to the case of an abelian group G, although the set $\mathfrak E_1$ of all normal endomorphisms of a nonabelian group G has been studied by Fitting and others (see [3], [4]). In the abelian case, a ring R can be formed from $\mathfrak E$ and studied instead of $\mathfrak E$. In similar fashion a type of near-ring (a distributively-generated near-ring) R can be formed from $\mathfrak E$ in the general case, and it is the purpose of this note to develop a structure theory for these near-rings which generalizes the Artin-Wedderburn theory for rings. The development is kept brief, both because of the analogy and because of the existence of some information on general near-rings (see [1], [2], [5]). Certain distinctions between the rings and the non-ring near-rings are discussed in the final section.

1. PRELIMINARY REMARKS

Let @ be a set of endomorphisms of an additively-written group G which satisfies the DCC on @-subgroups. Addition and multiplication of endomorphisms E and F of G are defined by the equations

$$g(E + F) = gE + gF$$
 and $g(EF) = (gE)F$ $(g \in G)$.

Extend the set $\mathfrak E$ to the semigroup $\mathfrak E'$ of all products of finitely many elements of $\mathfrak E$. Then the subset $R(\mathfrak E)$ of the set of all mappings of G into itself consisting of all finite linear combinations Σ r_i E_i of elements E_i of $\mathfrak E'$ with rational integral coefficients r_i will be called the *system generated by* $\mathfrak E$.

Now a *near-ring* N is a set of elements with two binary operations, written as addition and multiplication, such that

- i) N is a group relative to addition;
- ii) N is a semigroup relative to multiplication;
- iii) a(b + c) = ab + ac for all $a, b, c \in N$.

An additive subgroup M of N is called a $\mathit{right\ module}$ provided MN \subseteq M. A near-ring N which

- i) contains a multiplicative semigroup D of right distributive elements d ((b+c)d=bd+cd for all b, $c \in N)$ such that each element of N can be written as a finite linear combination $\sum r_i d_i$ of d_i of D with rational integral coefficients r_i ,
- ii) satisfies the DCC for right modules is called a *distributively-generated* near-ring (DGN-ring). Obviously $R(\mathfrak{E})$ is a DGN-ring. If the additive group of a DGN-ring is denoted by G and D by \mathfrak{E} , then clearly the system $R(\mathfrak{E})$ is a homomorphic image of N (right regular representation) and is isomorphic with N if, for instance, N has a multiplicative identity.

Received February 7, 1958.