HERMITIAN MANIFOLDS WITH ZERO CURVATURE
William M. Boothby

1. INTRODUCTION

In this note we consider the problem of determining those complex-analytic
manifolds with a Hermitian metric whose curvature vanishes everywhere. It is
easy to see that the identical vanishing of the curvature implies that there exists in
a neighborhood of each point a field of n independent (in fact, orthonormal) parallel
analytic vectors, where n is the dimension of the manifold. If the manifold is simply
connected, such a field may then be defined over the entire manifold, and the mani-
fold is therefore parallelisable (a complex-analytic manifold of complex dimension
n is said to be parallelisable if there exist n analytic vector fields defined over it
which are independent at each point). On the other hand, if a complex-analytic mani-
fold is parallelisable, then it has a Hermitian metric with curvature zero. Hence,
for a complex-analytic manifold, the existence of such a metric is a somewhat
weaker property than parallelisability. H. C. Wang [6] has shown that a compact,
complex-analytic, parallelisable manifold has a complex Lie group as its universal
covering space. Here this is generalized to the corresponding theorem for the case
of vanishing curvature.

We use the notation of [4], except that we denote the conjugate of a complex
number by a bar, and that the * on indices is replaced by a bar. Thus Greek indices
range from 1 to 2n, unbarred Latin indices from 1 to n, and barred Latin indices
from n+ 1 to 2n. In local coordinates z!, -- , 2%, and relatlve to the natural (affine)
frames, the metric tensor is denoted by g1J dz dzJ and the components of the con-
nectlon CBY are given by
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all other components being zero. The torsion tensor is simply the skew-symmetric
part of the connection, that is, Ag% y = CB - C B . Its vanishing is the condition that
the metric be Kahlerian. Covariant derlvatwes are given by the usual formula
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There are natural decompositions of a tensor into a sum of pure tensors of special
types, those of a given type having components which vanish except for a particular
pattern of Latin indices, for example, for all except the unbarred Latin indices. It is
easy to see from the def1n1t10n of covamant derlvatwes that if a tensor is pure and

has only unbarred indices (example: X ” js °), then the components are analytic

functions of the local coordinates in each coordinate system if and only if
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