ITERATED LIMITS

T. H. Hildebrandt

Let Q_1 and Q_2 be directed sets with order relations R_1 and R_2 , respectively, and f a function on Q_1Q_2 to the reals. In this situation the following iterated limits theorem is well known (see Moore and Smith [6, p. 116]): if $\lim_{q_1} f(q_1q_2)$ exists for every q_2 and $\lim_{q_2} f(q_1q_2)$ exists uniformly for q_1 on Q_1 , then the iterated limits $\lim_{q_1} \lim_{q_2} f(q_1q_2)$, $\lim_{q_2} \lim_{q_1} f(q_1q_2)$ and the double limit $\lim_{q_1} q_2$ $f(q_1q_2)$ all exist and are equal. For the case where Q_1 and Q_2 are the positive integers in their natural order, that is, f_{mn} is a double sequence, and f_{mn} is monotone nondecreasing in n for each m, the uniformity condition is also necessary; in other words, if $\lim_{m} \lim_{n} f_{mn} = \lim_{n} \lim_{m} f_{mn}$, then the inner limits are both uniform, and the double limit exists (see Hildebrandt [4, p. 81]). This note gives the following generalization of this result to Moore-Smith directed limits.

THEOREM. If $f(q_1q_2)$ is a real-valued function on Q_1Q_2 such that $f(q_1q_2)$ is monotone in q_1 in the sense that $q_1'R_1q_1''$ implies $f(q_1'q_2) \geq f(q_1''q_2)$ for every q_2 , and if $\lim_{q_1} \lim_{q_2} f(q_1q_2) = \lim_{q_2} \lim_{q_1} f(q_1q_2)$, all limits being assumed to exist as finite numbers, then the double limit $\lim_{q_1q_2} f(q_1q_2)$ exists and is equal to the iterated limits.

Let $\lim_{q_1} f(q_1q_2) = g(q_2)$ and $\lim_{q_2} f(q_1q_2) = h(q_1)$, and $\lim_{q_2} g(q_2) = \lim_{q_1} h(q_1) = a$. Then, because of the monotoneity of f in q_1 , there exists for every e > 0 a q_{2e} such that $q_2R_2q_{2e}$ implies the relation

$$f(q_1q_2) < g(q_2) < a + 2e$$
.

On the other hand, select q_{1e}' so that $h(q_{1e}') \geq a$ - e, and q_{2e}' so that $q_2R_2q_{2e}$ implies $f(q_{1e}'q_2) \geq h(q_{1e}')$ - e. Then, if $q_1R_1q_{1e}'$ and $q_2R_2q_{2e}'$, it follows from the monotoneity of f that

$$f(q_1q_2) \ge f(q_{1e}'q_2) \ge h(q_{1e}') - e \ge a - 2e$$
.

Consequently, if $q_{2e}^{"}$ is chosen so that $q_{2e}^{"}R_2q_{2e}$ and $q_{2e}^{"}R_2q_{2e}^{'}$, we have that $q_1R_1q_{1e}$ and $q_2R_2q_{2e}^{"}$ implies a - $2e \le f(q_1q_2) \le a + 2e$; in other words, the double limit exists and has the desired value.

Since $\lim_{q_2} g(q_2) = a$, it follows further that for every e > 0 there exist q_{1e} and q_{2e} such that if $q_1 R_1 q_{1e}$ and $q_2 R_2 q_{2e}$, we have $\left| f(q_1 q_2) - g(q_2) \right| \leq 2e$, a sort of pseudo-uniformity. In case Q_2 is the set of integers in their natural order, there are only finite number of $n \leq n_e$, for which of course $f(q_1 n)$ converges to g(n), so that we actually have uniformity as to n. Since Q_1 and Q_2 are interchangeable, here, we have

COROLLARY 1. Under the hypothesis of the Theorem, if either Q_1 or Q_2 is the class of positive integers in their natural order, then the convergence of f(nq) is uniform as to n.

Received August 1, 1957.