A THEOREM ON TWO-DIMENSIONAL VECTOR SPACES

John S. Griffin, Jr. and J. E. McLaughlin

In classical projective geometry, homogeneous coordinates for the line are customarily introduced by means of an algorithm. If one wished to give a formal definition, one might begin by observing that projective lines can be manufactured from two-dimensional vector spaces in a natural way; then a system of homogeneous coordinates for a line L in a projective space might possibly be defined as a one-to-one mapping, from L onto a line so constructed, which preserves projectivities.

More specifically, if V is a two-dimensional vector space over a division ring D, let Π_V be the family of all lines of V which pass through the origin; and for any nonzero vector v of V, let [v] be the unique member of Π_V to which v belongs. A map $p: \Pi_V \to \Pi_V$ will be called a *projectivity* if there is some nonsingular linear transformation $\alpha\colon V \to V$ such that $[v]p = [v\alpha]$ for all $v \in V$. Then, if L is a line in a projective space P, the map h constitutes a system of homogeneous coordinates for L provided, for some vector space V over a division ring D, the map h: $L \to \Pi_V$ is one-to-one onto and $p: \Pi_V \to \Pi_V$ is a projectivity if and only if hph⁻¹ is a projectivity of L (where projectivities of L are defined, as classically, to be sequences of perspectivities in P).

The question arises whether such a system of homogeneous coordinates is necessarily equivalent to the one given by the classical algorithm. Put algebraically, this question becomes: if V and W are two-dimensional vector spaces over division rings D and E, respectively, and if $f\colon \Pi_V\to\Pi_W$ is a one-to-one onto map which preserves projectivities, does there exist a semilinear isomorphism from V onto W which induces f? The map f induces a special isomorphism from the projective group of V onto the projective group of W, and a classical result due to Schreier and van der Waerden [5] tells us that if D and E are commutative and contain more than five elements, then any isomorphism between these groups yields an isomorphism of D onto E. Once we know that D and E are isomorphic, then Hua's determination of the automorphisms of the two-dimensional projective groups [4] yields the fact that f is indeed induced by a semilinear isomorphism of V onto W.

We shall show, below, that in general the map f induces either an isomorphism or an anti-isomorphism of D onto E and then, again by Hua's result, f is induced either by a semilinear isomorphism of V onto W, or by a semilinear isomorphism of V onto W* (the dual space of W), followed by the canonical map from W* to W.

We emphasize that our isomorphism of the projective group of V onto the projective group of W is a special one; and whether or not an arbitrary isomorphism yields an isomorphism or anti-isomorphism of D onto E remains an open question.

We thank the referee for several important remarks concerning our theorem.

THEOREM. Let V and W be two-dimensional vector spaces over division rings D and E, respectively, and suppose $f: \Pi_V \to \Pi_W$ is one-to-one onto. Suppose further that if G and H denote the respective projective groups, then the map $f^*: G \to H$

Received March 12, 1957.

This work was done while J. E. McLaughlin held a Summer Faculty Research Fellowship from the Horace Rackham School of the University of Michigan.