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In classical projective geometry, homogeneous coordinates for the line are
customarily introduced by means of an algorithm. If one wished to give a formal
definition, one might begin by observing that projective lines can be manufactured
from two-dimensional vector spaces in a natural way; then a system of homogeneous
coordinates for a line L in a projective space might possibly be defined as a one-to-
one mapping, from L onto a line so constructed, which preserves projectivities.

More specifically, if V is a two-dimensional vector space over a division ring
D, let IIy be the family of all lines of V which pass through the origin; and for any
nonzero vector v of V, let [v] be the unique member of IIy to which v belongs. A
map p: [y — [y will be called a projectivity if there is some nonsingular linear
transformation a: V—V such that [v]p =[va] for all v € V. Then, if L is a line in
a projective space P, the map h constitutes a system of homogeneous coovdinates
for L provided, for some vector space V over a division ring D, the map h: L —1IIy
is one-to-one onto and p: My —Ily is a projectivity if and only if hph™! is a projec-
tivity of L (where projectivities of L are defined, as classically, to be sequences of
perspectivities in P).

The question arises whether such a system of homogeneous coordinates is neces-
sarily equivalent to the one given by the classical algorithm. Put algebraically, this
question becomes: if V and W are two-dimensional vector spaces over division
rings D and E, respectively, and if f: Ily—IIyw is a one-to-one onto map which pre-
serves projectivities, does there exist a semilinear isomorphism from V onto W
which induces f? The map f induces a special isomorphism from the projective
group of V onto the projective group of W, and a classical result due to Schreier
and van der Waerden [5] tells us that if D and E are commutative and contain more
than five elements, then any isomorphism between these groups yields an iso-
morphism of D onto E. Once we know that D and E are isomorphic, then Hua’s
determination of the automorphisms of the two-dimensional projective groups [4]
yields the fact that f is indeed induced by a semilinear isomorphism of V onto W.

We shall show, below, that in general the map f induces either an isomorphism
or an anti-isomorphism of D onto E and then, again by Hua’s result, f is induced
either by a semilinear isomorphism of V onto W, or by a semilinear isomorphism
of V onto W* (the dual space of W), followed by the canonical map from W* to W.

We emphasize that our isomorphism of the projective group of V onto the pro-
jective group of W is a speci2l one; and whether or not an arbitrary isomorphism
yields an isomorphism or anti-isomorphism of D onto E remains an open question.

We thank the referee for several important remarks concerning our theorem.

THEOREM. Let V and W be two-dimensional vector spaces over division rings
D and E, respectively, and suppose f: lIyy — Ily is one-to-one onto. Suppose further
that if G and H denote the vespeclive projective groups, then the map f*: G— H
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