REMARKS ON A PAPER BY A. FRIEDMAN

Maxwell O. Reade

In this note we shall give a slight generalization of Theorem 2 in the preceding
paper by Friedman, and we shall remark on additional problems in the same direc-
tion. We adhere to Friedman’s notation.

In the following generalization of Friedman’s Theorem 2, we assume that n and
are fixed positive integers with n > 2p, that ¢ is a fixed real number, and that
F(a, B), n, R, ¢] denotes the closed finite region bounded by a certain oriented polygon
centered at (a B).

THEOREM 2'. Let u(x, y) be a real-valued function, continuous in the domain D.
If theve exist veal-valued functions Ay(x,y) (0 <k<p - 1), continuous in D, and
with A, =1, such that
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holds for all [(a, B), n, R, ¢]in D, then u(x, y) is a p-harmonic polynomial of de-
gree at most pn, and ils derivalive in the ¢-direction vanishes identically.

Proof. As Friedman remarks, it is sufficient to consider the case ¢ = 0, for the
general case can then be obtained by a rotation. We note that Friedman’s formula
(2.1) can be modified to yield the following result:
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First we assume that u(x, y) has continuous partial derivatives of the first 2p
orders in D. If we develop u(x, y) in a finite Taylor expansion about an arbitrary
point (a, B) in D,
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and make use of (ii), we obtain
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