ON MINIMAL COMPLETELY REGULAR SPACES ASSOCIATED WITH A GIVEN RING OF CONTINUOUS FUNCTIONS

Melvin Henriksen

1. INTRODUCTION

In this note, Heider's question is answered in the negative. It is shown, moreover, that if μX exists, then it consists of all of the isolated points of X, together with those nonisolated points p of X such that $C(X \sim \{p\})$ and C(X) fail to be strictly isomorphic. Thus, if μX exists, it is unique.

2. PRELIMINARY REMARKS

Let C(X) denote the ring of all continuous real-valued functions on a completely regular space X. Let $C^*(X)$ denote the subring of all bounded $f \in C(X)$. The following known facts are utilized below.

- (2.1) Corresponding to each completely regular space X, there exists an essentially unique compact space βX , called the Stone-Čech compactification of X, such that (i) X is dense in βX , and (ii) every $f \in C^*(X)$ has a (unique) extension $\overline{f} \in C^*(\beta X) = C(\beta X)$. Thus $C^*(X)$ and $C(\beta X)$ are isomorphic. (See, for example, [3] or [4, Chapter 5].)
- (2.2) There exists an essentially unique subspace vX of βX such that (i) X is a Q-space, (ii) X is dense in vX, and (iii) every $f \in C(X)$ has a (unique) extension $f \in C(vX)$. Thus C(X) and C(vX) are isomorphic. (For the definition of Q-space, and a proof of this theorem, see [1] or [3].)
- (2.3) If X and Y are completely regular spaces such that C(X) and C(Y) are isomorphic, then Y is homeomorphic to a dense subspace of vX such that every real-valued function continuous on this subspace has a (unique) continuous extension over vX. [3, Theorem 65.]
- (2.4) If Z is any compact space, and f is any continuous mapping of X into Z, then there exists a (unique) continuous extension \hat{f} of f over βX into Z. (See [5, Theorem 88].)

Received May 17, 1956.

The author was supported (in part) by the National Science Foundation, grant no. NSF G 1129. He is also indebted to Meyer Jerison for several helpful comments, and to L. J. Heider for an advanced copy of [2].

^{1.} Since the writing of this paper, Heider's problem has been generalized and solved independently by J. Daly and L. J. Heider.