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1. INTRODUCTION

The classical theorem of H. Weyl concerning the asymptotic behavior of the
eigenvalues of the Laplacian can be stated (in three-dimensional space, say) as fol-
lows.

Consider the integral equation
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wheve | Q| denotes the volume of @ . In a previous paper [1] a proof of this theorem,
based on the theory of Brownian motion (Wiener measure), was sketched.

It is the purpose of this paper to prove an analogous theorem for integral equa-
tions of the form
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Unlike in the case (1.1), there is no equivalent formulation in terms of a differential
equation. The method of proof will be illustrated on the one-dimensional case, and
to obtain a somewhat more general result we shall consider the integral equation
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where V(y) is a continuous function bounded away from 0, that is,
(1.5) Vy)>m>0, (-a<y<a).
To avoid complications of a minor nature we shall consider (1.4) only for o < 1/2,

indicating later how this restriction can be removed. The final result is given by
formula (4.3). The proof will be an adaptation of the argument used in §11 of [1].
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