THE POINT SPECTRUM OF WEAKLY ALMOST PERIODIC FUNCTIONS

W. F. Eberlein

1. INTRODUCTION

We adopt the terminology and notation of our first paper [1] on the family $\mathfrak B$ of weakly almost periodic functions on a locally compact Abelian group G. With every w.a.p. function x(t) we associate a formal Fourier series

$$\sum_{\lambda \in G^*} a(\lambda)(t, \lambda),$$

where $a(\lambda) = M_s[x(s)(-s, \lambda)]$. We show that the Fourier series is the Fourier series of an almost periodic (a.p.) function $x_1(t)$; that is, every w.a.p. function x(t) admits a unique decomposition $x = x_1 + x_2$, where x_1 is a.p. and $M(|x_2|^2) = 0$. The set $[\lambda : a(\lambda) \neq 0]$ becomes the discrete or discontinuous part of the spectrum $\sigma(x)$ (see [2]).

The basic ergodic theorem which underlies the mean value theory of w.a.p. functions in [1] now reappears in the guise of a summability theorem.

2. ABSTRACT SUMMABILITY THEORY

In the present context, summability theory rests on the almost periodic properties of the kernel:

LEMMA 1. Let x be w.a.p., and let y be a.p. with the properties y(t) > 0, y(-t) = y(t), M(y) = 1. Then x * y lies in $\overline{O}(x)$, the closed convex hull of the translates of x.

Proof. For every t,

$$(x * y)(t) = M_s[x(s)y(t - s)] = M_s[x(s)y(s - t)] = \lim_{\alpha} T_{\alpha}(xy_t)$$
,

where the T_{α} run through the semi-group of finite convex combinations of translation operators $x(s) \rightarrow x_u(s) = x(s-u)$ ordered by multiplication (see [1], p. 225). Since the T_{α} are equi-uniformly continuous and the set $\{y_t\}$ and (hence) the set $\{x \cdot y_t\}$ (t \in G) are conditionally compact in the norm topology of C(G), the convergence is uniform in t. It follows that for every $\epsilon > 0$ there exists a finite set $\{s_n\}$ in G and a set $\{a_n\}$ of positive real numbers with $\Sigma a_n = 1$ such that simultaneously

(1)
$$\left| (x*y)(t) - \sum a_n x(s-s_n) y(s-s_n-t) \right| < \varepsilon/2 \quad (s, t \in G),$$

(2)
$$\Sigma a_n y(-s_n) = b$$
, where $|1 - 1/b| < \frac{\varepsilon}{2 \|x\| \cdot \|y\|}$.

Received March 5, 1956.

This research was supported in part by the United States Air Force under Contract No. A.F. 18 (600) - 679, monitored by the Office of Scientific Research.