A NOTE ON TOPOLOGIES ON 2 98

R. W. Bagley

In this paper we consider topologies on 2^{\Re} , the set of functions on \Re into the two-element set $\{0, 1\}$. We make no distinction between 2^{\Re} and the collection of subsets of \Re ; that is, we identify each subset of \Re with its characteristic function.

We define the sequential order topology τ_1 as follows: A subset B of 2^{\Re} is closed if it contains the limit of each convergent sequence contained in B; the sequence $\{x_n\}$ is said to converge to x whenever

$$\bigcup_{m} \bigcap_{n \ge m} x_n = x = \bigcap_{m} \bigcup_{n \ge m} x_n$$

(see [1]). The transfinite sequential order topology τ_2 and the order topology τ_3 are defined analogously, with "sequence" replaced by "transfinite sequence" for τ_2 and by "net" for τ_3 . By "transfinite sequence" we mean a function on a well ordered set into a set, and by "net" we mean a function on a directed set into a set. The topology of pointwise convergence is the usual strong product topology where the discrete topology is taken as the topology for $\{0, 1\}$. We denote this topology by τ_4 .

Notation. For convergence under τ_i (i = 1, 2, 3, 4), we write $x_{\alpha} \rightarrow x$ under τ_i . If x is a point of accumulation under τ_i of a set A, we write $x \in A'$ (τ_i). As usual, the statement that $x \in A'$ (τ_i) means that every set open under τ_i and containing x contains points of A - (x). We order topologies as follows: τ is stronger than or equal to τ' ($\tau \geq \tau'$) if each set open (closed) under τ is also open (closed) under τ' . For the characteristic function f_x of a subset x of \Re , and for j in \Re , we mean by the statements $f_{x_n}(j) \rightarrow f_x(j)$ and $f_{x_{\alpha}}(j) \rightarrow f_x(j)$ that the sequence $\{f_{x_n}(j)\}$ in $\{0, 1\}$ converges to $f_x(j)$ and that the net $\{f_{x_{\alpha}}(j)\}$ converges, as a Moore-Smith limit, to $f_x(j)$, respectively. By 2^{\Re} (τ) we mean the space determined by the set 2^{\Re} with topology τ .

THEOREM 1. Every projection π_j (j $\in \Re$) of $2^{\, \Re}$ is continuous under τ_i (i = 1, 2, 3, 4). Also, $\tau_1 \leq \tau_2 \leq \tau_3 \leq \tau_4$.

Proof. For τ_4 the result is well known and is an immediate consequence of the definition of τ_4 . For the other cases we note that $\pi_j^{-1}(1)$ is the collection of subsets of \Re which contain j. It is both open and closed under τ_1 , τ_2 and τ_3 ; and $\pi_j^{-1}(0)$ is the complement of $\pi_j^{-1}(1)$. This shows that τ_i (i=1,2,3) is weaker than or equal to τ_4 , since τ_4 is the strongest topology under which every projection is continuous. Since every sequence is a transfinite sequence and every transfinite sequence is a net, we have $\tau_1 \leq \tau_2 \leq \tau_3$. This implies the ordering $\tau_1 \leq \tau_2 \leq \tau_3 \leq \tau_4$.

THEOREM 2. If \Re is countable, then $\tau_1 = \tau_2 = \tau_3 = \tau_4$.

Proof. Suppose $x \in A'$ (τ_4) . Then, since τ_4 is metric, \Re being countable, there exists a sequence $\{x_n\}$ in A - (x) such that $x_n \rightarrow x$ under τ_4 . But this means that $f_{x_n}(j) \rightarrow f_x(j)$ for each j in \Re , where f_{x_n} and f_x are the characteristic functions

Received May 2, 1955, and in revised form December 7, 1955.