A THEOREM ABOUT MAPPINGS OF A TOPOLOGICAL GROUP INTO THE CIRCLE

R. L. Plunkett

1. INTRODUCTION. If S is the unit circle topological group with complex multiplication as its operation, and if G is a compact topological space, then the collection S^G of mappings of G into S with the compact-open topology is a commutative, metric topological group. For f_1 and f_2 in S^G , the product $f_1 \cdot f_2$ is the mapping defined by the relation

$$[f_1 \cdot f_2](x) = f_1(x)f_2(x), for all x \in G,$$

and the inverse f^{-1} of any $f \in S^G$ is defined by the relation

$$[f^{-1}](x) = [f(x)]^{-1}$$
, for all $x \in G$.

The identity is the mapping f_0 defined by $f_0(x) \equiv 1$. A metric ρ for S is that defined by $\rho(z_1, z_2) = |z_1 - z_2|$, and the metric $\rho *$ for S^G may be defined by

$$\rho^*(f, g) = \sup_{x \in G} \rho[f(x), g(x)].$$

Following Eilenberg [1], a mapping $f \in S^G$ is said to be equivalent to 1 on a subset H of G ($f \sim 1$ on H) provided there exists a mapping $\phi : H \rightarrow R$, the real line, such that $f(x) = \exp[i \phi(x)]$ for all $x \in H$. Two mappings f and g in S^G are said to be equivalent on $H \subset G$ ($f \sim g$ on H) provided $f \cdot g^{-1} \sim 1$ on H. It is shown in [1] that \sim is an equivalence relation, that if G is a separable metric space, then $f \sim g$ if and only if f is homotopic to g, and that $P(G) = \{f \mid f \in S^G, f \sim 1\}$ is algebraically a subgroup of S^G . In [1] and here also, if $|z_1 - z_2| < 2$, $[z_1, z_2]$ denotes the signed angle less than π through which the radius to z_1 must be rotated in order to coincide with the radius to z_2 .

It will be shown in this paper that P(G) is an open subgroup of S^G when G is compact, and that the factor group $S^G/P(G)$ is isomorphic to the character group of G when G is a compact, connected, commutative topological group satisfying the second axiom of countability. A corollary to this result is the fact that every mapping of such a topological group G into S is homotopic to an interior mapping. This corollary is analogous to a result of G. T. Whyburn [2].

- 2. With reference to the remark which follows, observe that the function $[z_1, z_2]$, for z_1 and z_2 in S and $|z_1 z_2| < 2$, is continuous and that $\exp(i[z_1, z_2]) = z_2/z_1$.
 - (2.1) If G is a compact topological space, P(G) is an open subgroup of SG.

Proof. Suppose, for some $f \in P(G)$, that g is a mapping such that $\rho * (f,g) < 2$. Then, for each $x \in G$, $[f(x), g(x)] < \pi$. Since $f \sim 1$ on G, there exists a continuous $\phi : G \rightarrow \mathbb{R}$ such that $f(x) = \exp[i\phi(x)]$, for all $x \in G$. Let $\psi : G \rightarrow \mathbb{R}$ be the function defined by

Received by the editors July 19, 1954.

The material presented here is a part of the author's dissertation, written at the University of Virginia, June, 1953.