A PROJECTION OPERATOR ON HARMONIC MAPPINGS

by

C. J. Titus

1. INTRODUCTION. Throughout this paper, D will denote a simply connected domain in the xy-plane. Let u = u(x,y) and v = v(x,y) be a pair of real-valued functions with continuous second partial derivatives on D; and let w denote the mapping of D into the uv-plane which is defined by these functions. The Jacobian matrix of w,

$$J = \begin{pmatrix} u_{x} & u_{y} \\ v_{x} & v_{y} \end{pmatrix} ,$$

satisfies the matrix differential equation

(1)
$$J_x e_2 - J_v e_1 = 0$$
,

where e_1 and e_2 are the unit vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and where the subscripts indicate that each element of J has been replaced by the corresponding partial derivative. If w is a harmonic mapping, then the further equation

$$J_y e_2 + J_x e_1 = 0$$

is also satisfied. With the notation ξ = Je2 and η = Je1, equations (1) and (2) can be written as the vector differential equations

$$\xi_{\mathbf{x}} = \eta_{\mathbf{y}}, \xi_{\mathbf{y}} = -\eta_{\mathbf{x}},$$

formally similar to the Cauchy-Riemann equations.

It should be noted that if a two-by-two matrix J of differentiable functions satisfies equation (1), it is the Jacobian matrix of a mapping.

2. DEFINITION OF PROJECTION OPERATOR. Henceforth, J will denote the Jacobian matrix of a harmonic mapping w with the components u and v. The operator P will be defined by the relation

$$\hat{J} = P[J] = (\hat{J} + KJK^{-1})/2$$
, where $K = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Received by the editors December 6, 1953.