UPPER AND LOWER BOUNDS OF ORDER TYPES

bу

Ben Dushnik

1. In 1940, Fraisse [1] defined the relation

$$\alpha \leq \beta$$

to mean that an ordered set A of type α is similar to a subset of an ordered set B of type β . If, at the same time, B is not similar to any subset of A, then we shall write $\alpha < \beta$. It is obvious that this definition depends only on the order types α and β , and is independent of the special sets A and B. If $\alpha \leq \beta$ and $\beta \leq \alpha$ both hold, we shall write $\alpha \equiv \beta$ and say that α and β are equivalent (even though α and β may be distinct). If neither $\alpha \leq \beta$ nor $\beta \leq \alpha$ holds, then α and β will be said to be non-comparable.

In terms of these relations it is natural to discuss the notions of upper and lower bounds of two order types, or their least upper and greatest lower bounds. Thus, γ would be called a least upper bound for α and β if $\alpha \leq \gamma$, $\beta \leq \gamma$, while for any δ such that $\alpha \leq \delta$ and $\beta \leq \delta$ it would follow that either $\gamma < \delta$ or that γ and δ are non-comparable.

2. Throughout this note we shall assume as known the usual terminology and symbolism for order-types and ordinals.

The purpose of this note is to give a method for demonstrating the following theorem:

If $\alpha = \omega \cdot r + m$, $\beta = \omega \cdot s + n$, where r and s are natural numbers and m and n are integers ≥ 0 , then α and β have only a finite number of distinct least upper bounds, namely, all types of the form

(I)
$$n + \omega * b_1 + \omega a_1 + \dots + \omega * b_t + \omega a_t + m$$

where t and the coefficients $a_1, \ldots, a_t, b_1, \ldots, b_t$ are natural numbers except that b_1 or a_t may be 0, and

We do not actually prove this theorem; however its proof would be only a slight modification of the proof of Theorem VI in section 4.

Hereafter, we shall call the types (I), with m=n=0, the mixed sums of α and β , similarly, an order-type γ will be called a mixed sum if α can be represented in the form (I) for some ordinals α and β .

3. We first prove a number of auxiliary theorems about mixed sums and their relation to general order types.