## REMARKS ON A PREVIOUS PAPER 1

by

## Chandler Davis

1. Raoul Bott suggested that a proof of Theorems 1 and 2 of [3] which avoided metrical considerations might show the duality relation of Theorem 2 as a consequence of standard duality theorems for convex cones. This method is followed here<sup>2</sup>; it will be seen to shorten the proofs almost to nothing.

It is convenient to take Theorem 1 in a slightly generalized form: Let the cones  $U \subseteq E^k$  and  $V \subseteq E^n$  satisfy  $D\{U\} = E^k$  and  $D\{V^{\dagger}\} = E^n$ . Then  $AU = V \cap D\{AU\}$  implies  $A'V^{\dagger} = U^{\dagger} \cap D\{A'V^{\dagger}\}$ 

Proof. First,  $AU = V \cap D\{AU\}$  gives  $(AU)^+ = V^+ + (D\{AU\})^+$ ; therefore  $A'(AU)^+ = A'V^+ + A'(D\{AU\})^+$ . Now for any  $W \subseteq E^k$  one has  $A'(AW)^+ = W^+ \cap A'E^n$ . Also in the present case  $D\{AU\} = AD\{U\} = AE^k$  and  $D\{A'V^+\} = A'D\{V^+\} = A'E^n$ . Therefore  $A'(AU)^+ = U^+ \cap D\{A'V^+\}$  and  $A'V^+ + A'(D\{AU\})^+ = A'V^+ + E^{k+} \cap A'E^n = A'V^+$ . The statement has been proved.

Furthermore, A'V is affine-equivalent to the geometric polar of AU.

Proof: The latter is  $(AU)^+ \mod (D\{AU\})^+ = (AU)^+ \mod (AE^k)^+$ . Now A' can be considered as defined on  $E^n \mod (AE^k)^+$ , since  $(AE^k)^+$  is its null-space; so considered, it is one-one, and an affine isomorphism.

Thms. 1 and 2 follow from the above by setting  $U = P^k = U^+$ ,  $V = P^n = V^+$ ; indeed,  $D\{P^k\} = E^k$ ,  $D\{P^n\} = E^n$ , as required.

2. The following simple construction seems, surprisingly enough, to be new.

Theorem 3. Every pointed convex polyhedral cone is affine-equivalent to the intersection of the positive orthant (in space of appropriate dimension) with a linear subspace.

Proof. Let the cone be  $AP^k \subseteq E^n$  (where A may be chosen so that extreme rays of  $P^k$  go into extreme rays of  $AP^k$ ). Consider  $A'E^n \cap P^k$ . This cone may be represented in the form  $BP^m$  (with extreme rays of  $P^m$  going into extreme rays of  $BP^m$ ). Now  $BP^m = P^k \cap D\{BP^m\}$ , so  $B'P^k$ 

See [3]. The present note follows the terminology and notation of [1] and [3]. Numbers in brackets refer to the Bibliography.

<sup>&</sup>lt;sup>2</sup> The positive polar of a cone may be regarded as a cone in the dual space, in which case all the proofs in this paper are of affine character. But the dual space is not distinguished notationally.