ON A THEOREM OF HENRY BLUMBERG

by

Casper Goffman

The theorem [1] asserts that for every real function f(x) on I = (0, 1) there is an everywhere dense set E such that f(x) is continuous on E relative to E.

It seems plausible that an analogous result should hold for one-one transformations; i.e., that for every one-one correspondence f(x), $f^{-1}(y)$ between I = (0,1) and J = (0,1) there should be sets E and f(E), everywhere dense in I and J, respectively, such that f(x), $f^{-1}(y)$ is a homeomorphism between them. The purpose of this note is to show that this is not true:

There is a one-one correspondence f(x), $f^{-1}(y)$ between I = (0, 1) and J = (0, 1) such that, for every E which is everywhere dense in I, f(x), $f^{-1}(y)$ is not a homeomorphism between E and f(E).

Consider the following two sequences of subintervals of I. For every positive integer n and every $m = 0, 1, ..., 2^n - 1$, let $(I_{nm} = \frac{m}{2^n}, \frac{m+1}{2^n})$.

Let $0 < a_1 < \cdots < a_k < \cdots < 1$ be an increasing sequence of positive numbers which converges to 1. Label the semi-open intervals $(0,a_1],(a_1,a_2],\cdots$, $(a_n,a_{n+1}],\cdots$ as $\widetilde{I}_{11}=(0,a_1],\widetilde{I}_{12}=(a_1,a_2],\widetilde{I}_{21}=(a_2,a_3],\cdots$, so that there is an \widetilde{I}_{nm} for every positive n and $m=0,1,\cdots,2^n-1$. The intervals \widetilde{I}_{nm} are mutually disjoint, their union is I, and if $n_1 > n_2$ or if $n_1 = n_2, m_1 > m_2$ then $\widetilde{I}_{n_1m_1}$ is to the right of $\widetilde{I}_{n_2m_2}$. Consider also the two sequences J_{nm} and \widetilde{J}_{nm} of subintervals of J obtained in the same way..

Now, for each positive n and m = 0, 1, ..., 2^n - 1, let $S_{nm} \subset I_{nm}$ and $T_{nm} \subset J_{nm}$ be non-empty, perfect, nowhere dense sets such that the sets S_{nm} are mutually disjoint and the sets T_{nm} are mutually disjoint. Let $S = U S_{nm}$ and $T = U T_{nm}$. Observe that both S and its complement intersect every subinterval of I in a set of cardinal number c, and that T has the same property relative to J. For each n and m, let $\widetilde{S}_{nm} = \widetilde{I}_{nm} - S$, $\widetilde{T}_{nm} = \widetilde{J}_{nm} - T$, and let $\widetilde{S} = U \widetilde{S}_{nm}$ and $\widetilde{T} = U \widetilde{T}_{nm}$.

It is clear that the \widetilde{S}_{nm} , as well as the \widetilde{T}_{nm} , are mutually disjoint, that I=S U \widetilde{S} , J=T U \widetilde{T} , and that every S_{nm} , \widetilde{S}_{nm} , T_{nm} and \widetilde{T}_{nm} has cardinal number c. The correspondence f(x), $f^{-1}(y)$ is defined by means of arbitrary one-one correspondences between S_{nm} and \widetilde{T}_{nm} and between \widetilde{S}_{nm} and T_{nm} for every n and m.