by

Jean Dieudonné

- 1. The primary purpose of this paper is a didactic one: we want to present the theory of biorthogonal systems in a more general and systematic way than it has been done before; most of our results are easy generalizations of known theorems, especially of recent work on bases in Banach spaces (see [2], [8], [10], [12], [13], [15]). The only special feature of our treatment consists in laying more emphasis on the <u>weak</u> topologies than is usually done, and this proves to be the unifying principle of the theory(1).
- 2. Let F and G be two vector spaces (over the real or the complex number field) in duality [6]. A system consisting of a family $(a_{\lambda})_{\lambda \in L}$ of points of F and a family $(b_{\lambda})_{\lambda \in L}$ of points of G is said to constitute a biorthogonal system if $\langle a_{\lambda}, b_{\lambda} \rangle = 1$ for all $\lambda \in L$ and $\langle a_{\lambda}, b_{\mu} \rangle = 0$ for $\lambda \neq \mu$.

PROPOSITION 1. Let $(a_{\lambda})_{\lambda \in L}$ be a family of points of F. In order that there exist in G a family $(b_{\lambda})_{\lambda \in L}$ forming with (a_{λ}) a biorthogonal system, it is necessary and sufficient that (a_{λ}) be topologically free for the topology $\sigma(F,G)$ (that is, for every $\lambda \in L$, a_{λ} does not belong to the closed subspace generated by the a_{μ} of index $\mu \neq \lambda$; see [4, p. 24]). Moreover if (b_{λ}) and (b_{λ}) are two such families, then $b_{\lambda}' - b_{\lambda} \in A^{O}$, where A is the closed subspace of F generated by the family (a_{λ}) ; in particular, $b_{\lambda}' = b_{\lambda}$ for all $\lambda \in L$ if and only if A = F.

The proof is an easy application of Hahn-Banach's theorem, and will therefore be omitted.

3. Abiorthogonal system $(c_{\mu})_{\mu \in M}$, $(d_{\mu})_{\mu \in M}$ $(c_{\mu} \in F, d_{\mu} \in G)$ is said to be an <u>extension</u> of a biorthogonal system $(a_{\lambda})_{\lambda \in L}$, $(b_{\lambda})_{\lambda \in L}$ if $L \subset M$, and $a_{\lambda} = c_{\lambda}$, $b_{\lambda} = d_{\lambda}$ for $\lambda \in L$. A biorthogonal system (a_{λ}) , (b_{λ}) is <u>maximal</u> if it has no proper extension. From Zorn's lemma it follows immediately that

PROPOSITION 2. Every biorthogonal system has a maximal extension.

Maximal biorthogonal systems are characterized by the following property:

PROPOSITION 3. Let (a_{λ}) , (b_{λ}) be a biorthogonal system, A the closed subspace (for $\sigma(F,G)$) generated by (a_{λ}) , B the closed subspace

⁽¹⁾ We are following the terminology and notations of [4], [5], [6] and [7].