ON MAPS OF THE THREE-SPHERE INTO THE PLANE

G. R. Livesay

1. INTRODUCTION

The following theorem deals with a special case of part of the Knaster conjecture [2].

THEOREM. Let $f: S^3 \to E^2$ be continuous, and let p, p_1, p_2 be points of S^3 which are vertices of an equilateral triangle in E^4 . Then there exists a rotation $r \in SO(4)$ such that $f(rp) = f(rp_1) = f(rp_2)$.

This note consists of a proof of this theorem. Before giving the proof, let us fix the notation. E^n is Euclidean n-space, S^{n-1} the unit sphere of E^n ; SO(n) is the group of proper rotations of E^n , considered here as operating on S^{n-1} ; and P^n is real projective n-space. For $x \in S^3$, let G_x denote the subgroup of SO(4) consisting of rotations which leave x fixed. Let $f_1 \colon S^3 \to E^1$ be the map obtained by following f by the projection of E^2 onto E^1 which is defined by the rule $(x_1, x_2) \to x_1$. Without loss of generality, suppose that p is a point of S^3 at which f_1 attains its maximum value, and that this maximum is positive. It is an elementary matter to show that there exists a rotation $a \in SO(4)$ satisfying

(1) ap =
$$p_1$$
, ap₁ = p_2 , a³ = 1 (where 1 denotes the identity element of SO(4)),

(2) a leaves some point, say
$$z \in S^3$$
, fixed.

Then G_P and G_Z are conjugate subgroups of SO(4), and they carry homologous, non-bounding, integral 3-cycles of SO(4). The proof will now proceed as follows: we shall construct a map $\psi \colon SO(4) \to S^3$, under the assumption that the theorem is false. Then we shall see that $\psi \mid G_P$ and $\psi \mid G_Z$ have different degrees. Since this is impossible, our proof by contradiction will then be complete.

2. CONSTRUCTION OF ψ

This construction is well known. Define the three maps

$$\phi \colon SO(4) \to E^6$$
, $T \colon SO(4) \to SO(4)$, $T^1 \colon E^6 \to E^6$

by the conditions

$$\phi(\mathbf{r}) = (f(\mathbf{r}p), f(\mathbf{r}p_1), f(\mathbf{r}p_2)),$$

$$T(\mathbf{r}) = \mathbf{r} \cdot \mathbf{a},$$

$$T^1(\mathbf{x}_1, \dots, \mathbf{x}_6) = (\mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_1, \mathbf{x}_2).$$

Then $\phi \circ T = T^1 \circ \phi$, since ap = p₁, and so forth. Let

Received June 8, 1957.

The author wishes to thank the Office of Naval Research for their support of this research.