AMBIGUOUS POINTS OF A FUNCTION HARMONIC INSIDE A SPHERE

F. Bagemihl

Let x, y, z denote the Cartesian coordinates of a point in three-dimensional Euclidean space, and set

$$S = \{(x, y, z): x^2 + y^2 + z^2 < 1\}, \quad T = \{(x, y, z): x^2 + y^2 + z^2 = 1\}.$$

THEOREM. There exists a harmonic function h(P) ($P \in S$) such that, for every $Q \in T$ and every real number r, including the values $+\infty$ and $-\infty$, there is a Jordan arc J_r^Q lying wholly in S except for its end point Q, with the property that

$$\lim_{P \to Q, P \in J_r^Q} h(P) = r.$$

Proof. Piranian has shown [2, Remark 2] that there exists a continuous function f(P) $(P \in S)$ such that the assertion we have made concerning the boundary behavior of h(P) holds for f(P); he has constructed a tree G in S such that, for every $Q \in T$ and every $Q \in T$ and

Let

$$\begin{aligned} 0 &< \mathbf{r}_0 < \mathbf{r}_1 < \cdots < \mathbf{r}_n < \cdots < 1, & \lim_{n \to \infty} \mathbf{r}_n = 1, \\ S_n &= \left\{ (x, y, z) \colon x^2 + y^2 + z^2 < \mathbf{r}_n^2 \right\}, & T_n &= \left\{ (x, y, z) \colon x^2 + y^2 + z^2 = \mathbf{r}_n^2 \right\} & (n = 0, 1, 2, \cdots), \\ K_n &= \left(S_n \cup T_n \cup G \right) \cap \left(S_{n+1} \cup T_{n+1} \right) & (n = 0, 1, 2, \cdots). \end{aligned}$$

For every nonnegative integer n, K_n is a compact set with the property that any continuous function on K_n that is harmonic at every interior point of K_n can be uniformly approximated on K_n as closely as desired by a harmonic polynomial (see [1]; I am indebted to Professor J. L. Walsh for this reference).

We define, by induction on n, a harmonic polynomial $h_n(P)$, as follows. Let

$$g_0(P) = 0$$
 $(P \in S_0 \cup T_0),$
 $g_0(P) = f(P)$ $(P \in G \cap T_1),$

and let $g_0(P)$ be linear on each segment of G which extends from T_0 to T_1 . Then $g_0(P)$ is continuous on K_0 and harmonic at every interior point of K_0 , and hence there exists a harmonic polynomial $h_0(P)$ for which

$$|h_0(P) - g_0(P)| < 1$$
 $(P \in K_0)$.

Suppose that n>0, and that we have defined the harmonic polynomial $h_{n-1}(P)$. Let

Received March 22, 1957.