## On Gaussian Periods That Are Rational Integers

## F. THAINE

## 1. Preliminaries

Let  $p \geq 3$  be a prime number,  $\zeta_p$  a pth primitive root of 1, and  $\Delta$  the Galois group of  $\mathbb{Q}(\zeta_p)/\mathbb{Q}$ . Let  $q \neq p$  be a prime number,  $\zeta_q$  a qth primitive root of 1, and n the order of q modulo p. Assume that  $q \not\equiv 1 \bmod p$ . Hence  $n \geq 2$ ,  $p(q-1) \mid q^n-1$ , and  $n \mid p-1$ . Set  $f = (q^n-1)/p$  and e = (p-1)/n. Let Q be a prime ideal of  $\mathbb{Z}[\zeta_p]$  above q and let  $\mathbb{F} = \mathbb{Z}[\zeta_p]/Q$ . Thus  $\mathbb{F} \simeq \mathbb{F}_{q^n}$ , the finite field with  $q^n$  elements. Let  $\alpha \in \mathbb{Z}[\zeta_p]$  be a generator of  $\mathbb{F}^\times$  such that  $\alpha^f \equiv \zeta_p \bmod Q$ , and let T be the trace from  $\mathbb{F}$  to  $\mathbb{F}_q$ . In this paper we study the Gaussian periods  $\eta_i$   $(0 \leq i \leq p-1)$  defined by

$$\eta_i = \sum_{i=0}^{f-1} \zeta_q^{T(\alpha^{i+pj})},\tag{1}$$

as well as the Gauss sum

$$G = \sum_{i=0}^{q^n - 2} \zeta_p^i \zeta_q^{T(\alpha^i)} = \sum_{i=0}^{p-1} \eta_i \zeta_p^i.$$
 (2)

Some basic definitions and results are given in this section. A short review of the cyclotomic numbers of order e corresponding to p is given in Section 2. Those numbers will play an important role in Section 4. In Section 3 we show applications of the periods  $\eta_i$  to the study of indices of cyclotomic units in  $\mathbb{Z}[\zeta_p]$  (with respect to Q and  $\alpha$ ) and of the orders of certain components of the ideal class group of  $\mathbb{Q}(\zeta_p)$ . More precisely, let A be the p-part of the ideal class group of  $\mathbb{Q}(\zeta_p)$ ,  $\mathbb{Z}_p$  the ring of p-adic integers, and  $\omega \colon \Delta \to \mathbb{Z}_p^{\times}$  the Teichmüller character; in Section 3 we study the  $\omega^{p-ln}$ -components of A for n and l odd,  $1 \le l \le e-1$  (see the definitions in Section 3). In Section 4 we show an efficient method to calculate the periods  $\eta_i$ , based on the Gross–Koblitz formula and on properties of the cyclotomic numbers of order e corresponding to e; in Section 5 we give a MAPLE program to perform such calculations. I am grateful to Hershy Kisilevsky and John McKay for some valuable comments.

We start with a simple proof of the known result (see [6, Thm. 4]) that, under the stated hypothesis, the  $\eta_i$  are rational integers and so  $G \in \mathbb{Z}[\zeta_p]$ . In fact, G belongs to the only subfield of degree e of  $\mathbb{Q}(\zeta_p)$  and is divisible by a (sometimes large) power of q.

Received March 15, 2001. Revision received December 17, 2001.