On Gaussian Periods That Are Rational Integers

F. Thaine

1. Preliminaries

Let $p \geq 3$ be a prime number, ζ_{p} a p th primitive root of 1 , and Δ the Galois group of $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$. Let $q \neq p$ be a prime number, ζ_{q} a q th primitive root of 1 , and n the order of q modulo p. Assume that $q \not \equiv 1 \bmod p$. Hence $n \geq 2, p(q-1) \mid q^{n}-1$, and $n \mid p-1$. Set $f=\left(q^{n}-1\right) / p$ and $e=(p-1) / n$. Let Q be a prime ideal of $\mathbb{Z}\left[\zeta_{p}\right]$ above q and let $\mathbb{F}=\mathbb{Z}\left[\zeta_{p}\right] / Q$. Thus $\mathbb{F} \simeq \mathbb{F}_{q^{n}}$, the finite field with q^{n} elements. Let $\alpha \in \mathbb{Z}\left[\zeta_{p}\right]$ be a generator of \mathbb{F}^{\times}such that $\alpha^{f} \equiv \zeta_{p} \bmod Q$, and let T be the trace from \mathbb{F} to \mathbb{F}_{q}. In this paper we study the Gaussian periods $\eta_{i}(0 \leq i \leq$ $p-1$) defined by

$$
\begin{equation*}
\eta_{i}=\sum_{j=0}^{f-1} \zeta_{q}^{T\left(\alpha^{i+p j}\right)} \tag{1}
\end{equation*}
$$

as well as the Gauss sum

$$
\begin{equation*}
G=\sum_{i=0}^{q^{n}-2} \zeta_{p}^{i} \zeta_{q}^{T\left(\alpha^{i}\right)}=\sum_{i=0}^{p-1} \eta_{i} \zeta_{p}^{i} \tag{2}
\end{equation*}
$$

Some basic definitions and results are given in this section. A short review of the cyclotomic numbers of order e corresponding to p is given in Section 2. Those numbers will play an important role in Section 4. In Section 3 we show applications of the periods η_{i} to the study of indices of cyclotomic units in $\mathbb{Z}\left[\zeta_{p}\right]$ (with respect to Q and α) and of the orders of certain components of the ideal class group of $\mathbb{Q}\left(\zeta_{p}\right)$. More precisely, let A be the p-part of the ideal class group of $\mathbb{Q}\left(\zeta_{p}\right), \mathbb{Z}_{p}$ the ring of p-adic integers, and $\omega: \Delta \rightarrow \mathbb{Z}_{p}^{\times}$the Teichmüller character; in Section 3 we study the $\omega^{p-l n}$-components of A for n and l odd, $1 \leq l \leq$ $e-1$ (see the definitions in Section 3). In Section 4 we show an efficient method to calculate the periods η_{i}, based on the Gross-Koblitz formula and on properties of the cyclotomic numbers of order e corresponding to p; in Section 5 we give a MAPLE program to perform such calculations. I am grateful to Hershy Kisilevsky and John McKay for some valuable comments.

We start with a simple proof of the known result (see [6, Thm. 4]) that, under the stated hypothesis, the η_{i} are rational integers and so $G \in \mathbb{Z}\left[\zeta_{p}\right]$. In fact, G belongs to the only subfield of degree e of $\mathbb{Q}\left(\zeta_{p}\right)$ and is divisible by a (sometimes large) power of q.

[^0]
[^0]: Received March 15, 2001. Revision received December 17, 2001.
 This work was supported in part by grants from NSERC and FCAR.

