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1. Introduction

In this article we study compactq-cycles on a complex reduced analytic spaceX,

mainly in the case whereq is the maximal dimension of a compact (irreducible)
analytic subset ofX.

We first give a result that generalizes a classical result due to Norguet and Siu
[18] about finiteness of compact hypersurfaces in ap-convex manifold; it gives a
suitable sufficient condition forX to have only finitely many irreducible compact
q-cycles.

Theorem 1. LetX andY be complex spaces such thatX is contained inY as a
locally closed analytic subset. Suppose that:

(a) Hq(X,�
q

X) has finite dimension overC, sayN; and
(b) H q+1(Y,F ) = 0 for every coherent subsheafF ⊂ �q

Y .

ThenX has at mostN compact irreducible analytic subsets of dimensionq.

We then study the convexity properties of the space of compactq-cyclesCq(X).
Theorem 2. Let X be a cohomologicallyq-complete complex space that is
Kählerian and(q + r)-convex for some nonnegative integerr. ThenCq(X) is
r-complete with corners.

This looks like a nice “convexity transfer”, but it is quite weak because ther-
convexity with corners is not so restrictive forr > 0. The method is similar to the
one used in [18] but requires us to work withr-plurisubharmonic functions (see
Section 3.1 for definitions) and to prove an approximation result by functions that
arer-convex with corners.

Theorem 3. LetZ be a complex space admitting a continuous exhaustion func-
tion ϕ that isq-plurisubharmonic. IfZ belongs toS0, thenZ is q-complete with
corners.

Note. S0 is the class of complex spaces such that, on every relatively compact open
subset, there exist continuous strongly plurisubharmonic functions. For instance,
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