Convexity Properties for Cycle Spaces

D. BARLET & V. VÂJÂITU

1. Introduction

In this article we study compact q-cycles on a complex reduced analytic space X, mainly in the case where q is the maximal dimension of a compact (irreducible) analytic subset of X.

We first give a result that generalizes a classical result due to Norguet and Siu [18] about finiteness of compact hypersurfaces in a p-convex manifold; it gives a suitable sufficient condition for X to have only finitely many irreducible compact q-cycles.

THEOREM 1. Let X and Y be complex spaces such that X is contained in Y as a locally closed analytic subset. Suppose that:

(a) $H^q(X, \Omega^q_X)$ has finite dimension over \mathbb{C} , say N; and

(b) $H^{q+1}(Y, \mathcal{F}) = 0$ for every coherent subsheaf $\mathcal{F} \subset \Omega_Y^q$.

Then X has at most N compact irreducible analytic subsets of dimension q.

We then study the convexity properties of the space of compact *q*-cycles $C_q(X)$.

THEOREM 2. Let X be a cohomologically q-complete complex space that is Kählerian and (q + r)-convex for some nonnegative integer r. Then $C_q(X)$ is r-complete with corners.

This looks like a nice "convexity transfer", but it is quite weak because the *r*-convexity with corners is not so restrictive for r > 0. The method is similar to the one used in [18] but requires us to work with *r*-plurisubharmonic functions (see Section 3.1 for definitions) and to prove an approximation result by functions that are *r*-convex with corners.

THEOREM 3. Let Z be a complex space admitting a continuous exhaustion function φ that is q-plurisubharmonic. If Z belongs to S_0 , then Z is q-complete with corners.

Note. S_0 is the class of complex spaces such that, on every relatively compact open subset, there exist continuous strongly plurisubharmonic functions. For instance,

Received January 4, 2001. Revision received August 6, 2001.