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1. Introduction and Results

Let n ≥ 2 and letSn−1 be the unit sphere inRn equipped with the normalized
Lebesgue measuredσ. Let b(·)∈L∞(R+) and let� be a homogeneous function
of degree zero onRn (which is then naturally identified with a function onSn−1)

satisfying�∈L1(S n−1) and ∫
S n−1

�(y) dσ(y) = 0. (1.1)

For a suitable mapping8 : Rn → Rd , we define the Marcinkiewicz integral
operatorµ8,�,b onRd by

µ8,�,b(f )(x) =
(∫ ∞

0
|F8,t(x)|2 dt

t 3

)1/2

, (1.2)

where

F8,t(x) =
∫
|y|≤t

�(y)

|y|n−1
b(|y|)f(x −8(y)) dy. (1.3)

If n = d, 8(y) = (y1, y2, . . . , yn), andb ≡ 1, then we shall simply denote the
operatorµ8,�,b byµ�.

The main purpose of this paper is to study theLp boundedness of the operators
µ8,�,b. The operatorµ� was introduced by Stein [S1]. He proved that if� satis-
fies a Lipα (0< α ≤ 1) condition onSn−1, thenµ� is of type(p, p) for 1< p ≤
2 and of weak type(1,1). Subsequently Benedek, Calderón, and Panzone [BCP]
showed that if� is continuously differentiable onS n−1 thenµ� is of type(p, p)
for 1< p < ∞. In a more recent paper [DFP] we obtained theLp boundedness
of µ� under the substantially weaker assumption that� ∈ H1(S n−1). In fact, it
was proved in [DFP] that the operatorµ1,�,b is bounded onLp(Rn) provided that
� ∈H1(S n−1) andb(·) ∈ L∞(R+). Here1 represents the identity mapping from
Rn to itself andH1(S n−1) denotes the Hardy space on the unit sphere that contains
L log+L(S n−1) as a proper subspace (see Section 3 for its definition).

In this paper we shall establish theLp boundedness ofµ8,�,b for several classes
of mapping8 with rough kernels�,mirroring recent developments in the theory
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