On Ideals in H^{∞} Whose Closures Are Intersections of Maximal Ideals

Keiji Izuchi

Dedicated to Professor Kôzô Yabuta on his sixtieth birthday

1. Introduction

Let H^{∞} be the Banach algebra of bounded analytic functions on the open unit disk D. We denote by $M(H^{\infty})$ the maximal ideal space of H^{∞} , the set of nonzero multiplicative linear functionals of H^{∞} endowed with the weak*-topology of the dual space of H^{∞} . Identifying a point in D with its point evaluation, we think of D as a subset of $M(H^{\infty})$. For $\varphi \in M(H^{\infty})$, put $\ker \varphi = \{f \in H^{\infty}; \varphi(f) = 0\}$. Then $\ker \varphi$ is a maximal ideal in H^{∞} , and for a maximal ideal I in H^{∞} there exists $\psi \in M(H^{\infty})$ such that $I = \ker \psi$. For $f \in H^{\infty}$, the function $\hat{f}(\varphi) = \varphi(f)$ on $M(H^{\infty})$ is called the *Gelfand transform* of f. We can identify f with \hat{f} , so that we think of H^{∞} as the closed subalgebra of continuous functions on $M(H^{\infty})$. Let L^{∞} be the Banach algebra of bounded measurable functions on ∂D . The maximal ideal space of L^{∞} will be denoted by $M(L^{\infty})$. We may think of $M(L^{\infty})$ as a subset of $M(H^{\infty})$. Then $M(L^{\infty})$ is the Shilov boundary of H^{∞} , that is, the smallest closed subset of $M(H^{\infty})$ on which every function in H^{∞} attains its maximal modulus. For a subset E of $M(H^{\infty})$, we denote the closure of E by E. A nice reference for this subject is [4].

For $f \in H^{\infty}$, there exists a radial limit $f(e^{i\theta})$ for almost everywhere. Let h be a bounded measurable function on ∂D such that $\int_0^{2\pi} \log|h| \, d\theta/2\pi > -\infty$. Put

$$f(z) = \exp\left(\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log|h(e^{i\theta})| \frac{d\theta}{2\pi}\right), \quad z \in D.$$

A function of this form is called *outer*, and $|f(e^{i\theta})| = |h(e^{i\theta})|$ almost everywhere. A function $u \in H^{\infty}$ is called *inner* if $|u(e^{i\theta})| = 1$ a.e. on ∂D . For a sequence $\{z_n\}_n$ in D with $\sum_{n=1}^{\infty} (1-|z_n|) < \infty$, there corresponds a Blaschke product

$$b(z) = \prod_{n=1}^{\infty} \frac{-\bar{z}_n}{|z_n|} \frac{z - z_n}{1 - \bar{z}_n z}, \quad z \in D.$$

A Blaschke product is called *interpolating* if, for every bounded sequence of complex numbers $\{a_n\}_n$, there exists $h \in H^{\infty}$ such that $h(z_n) = a_n$ for every n. For a nonnegative bounded singular measure μ ($\mu \neq 0$) on ∂D , let

Received July 18, 2000. Revision received August 29, 2001.

Supported by Grant-in-Aid for Scientific Research (no. 10440039), Ministry of Education, Science, Sports and Culture.