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1. Introduction

LetX be ann-dimensional, smooth, irreducible, algebraic variety overC and letL
be an ample divisor onX. LetMX,L(r; c1, . . . , cmin(r,n)) denote the moduli space of
rank-r, L-stable (in the sense of Mumford and Takemoto) vector bundlesE onX
with Chern classesci(E) = ci ∈H 2i(X,Z). Moduli spaces for stable vector bun-
dles on smooth, irreducible, algebraic projective varieties were constructed in the
1970s. Many interesting results have been proved regarding these moduli spaces
when the underlying variety is a surface, but very little is known if the variety has
dimension greater than or equal to three. Until now there have been no general re-
sults about these moduli spaces concerning the number of connected components,
dimension, smoothness, rationality, topological invariants, and so forth.

A major result in the theory of vector bundles on an algebraic surfaceS was the
proof that, for largec2, MS,L(r; c1, c2) is irreducible, generically smooth, and of
the expected dimension 2rc2− (r −1)c2

1 − (r 2−1)χ(OS). For moduli spaces of
vector bundles on a higher-dimensional variety, the situation differs drastically.
The smoothness and irreducibility turn out to be false when dimX ≥ 3. For in-
stance, in [BM, Thm. 0.1], Ballico and Miró-Roig prove that, under certain tech-
nical restrictions onc1, the number of irreducible components of the moduli space
MX,L(2; c1, c2) of L-stable, rank-2 vector bundles on a smooth projective 3-fold
X, with fixed c1 andc2L going to infinity, grows to infinity. See [MO] for exam-
ples of singular moduli spaces of vector bundles onP2n+1 with c2� 0.

Let X = P(E ) → C be aP d -bundle over a smooth projective curveC of
genusg ≥ 0. The goal of this paper is to compute the dimension, prove the
irreducibility and smoothness, and describe the structure of the moduli space
MX,L(2; c1, c2) for a suitable polarizationL closely related toc2. More precisely,
we will cover the study of all moduli spacesMX,L(2; c1, c2) such that the gen-
eral point [E ] ∈ MX,L(2; c1, c2) is given as a nontrivial extension of line bun-
dles (Theorems 3.4, 3.5, 3.8, and Remark 3.9). In particular, for rational nor-
mal scrolls (i.e.,P d -bundles overP1) and for a certain choice ofc1, c2 andL,
we have that the moduli spaceMX,L(2; c1, c2) is rational (Corollary 3.6). There-
fore, the geometry of the underlying variety and of the moduli spaces are intimately
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