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T. Bandman & L. Makar-Limanov

1. Introduction

In this paper we proceed with our research [BaM1; BaM2] of the smooth surfaces
withC+-actions. We denote byO(S) the ring of all regular functions onS. Let us
recall that theAK invariantAK(S) ⊂ O(S) of a surfaceS is just the subring of
the ringO(S) consisting of those regular functions onS that are invariant under all
C+-actions ofS. This invariant can be also described as the subring ofO(S) of all
functions that are constants for all locally nilpotent derivations ofO(S) [KKMR;
KM; M1].

We would like to give the answer to the following question: What are the sur-
faces with the trivial invariantAK ?

It is quite easy to show (see [M2]) that the complex lineC is the only curve
with the trivial invariant. It is also well known that, ifAK(S) = C andO(S) is a
unique factorization domain (UFD), thenS is an affine complex planeC2 [MiS;
S]. If we drop the UFD condition then we have many smooth surfaces with trivial
invariant—for example, any hypersurface of the form{xy = p(z)} ⊂ C3, where
all roots ofp(z) are simple.

Since we did not know any other examples, we had the following working con-
jecture.

Conjecture. Any smooth affine surfaceS withAK(S) = C is isomorphic to a
hypersurface

{xy = p(z)} ⊂ C3.

It turned out that this conjecture is true only with an additional assumption thatS

admits a fixed-point–freeC+-action. Also, if we assume thatS is a hypersurface
with AK(S) = C thenS is indeed isomorphic to a hypersurface defined by the
equationxy = p(z).

Surfaces of this kind have been well known since 1989 owing to the following
remarkable fact, which was discovered by Danielewski [D] in connection with the
generalized Zariski conjecture (see also Fieseler[F]): the surfaces{xny = p(z)}
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