Solving the d- and $\bar{\partial}$ -Equations in Thin Tubes and Applications to Mappings

FRANC FORSTNERIČ, ERIK LØW, & NILS ØVRELID

1. The Results

Let \mathbb{C}^n denote the complex n-dimensional Euclidean space with complex coordinates $z=(z_1,\ldots,z_n)$. A compact \mathcal{C}^k -submanifold $M\subset \mathbb{C}^n$ $(k\geq 1)$, with or without boundary, is *totally real* if for each $z\in M$ the tangent space T_zM (which is a real subspace of $T_z\mathbb{C}^n$) contains no complex line; equivalently, the complex subspace $T_z^CM=T_zM+iT_zM$ of $T_z\mathbb{C}^n$ has complex dimension $m=\dim_{\mathbb{R}}M$ for each $z\in M$. We denote by $\mathcal{T}_\delta M=\{z\in \mathbb{C}^n: d_M(z)<\delta\}$ the tube of radius $\delta>0$ around M; here |z| is the Euclidean norm of $z\in \mathbb{C}^n$ and $d_M(z)=\inf\{|z-w|:w\in M\}$.

For any open set $U \subset \mathbb{C}^n$ and integers $p, q \in \mathbb{Z}_+$ we denote by $\mathcal{C}^l_{p,q}(U)$ the space of differential forms of class \mathcal{C}^l and of bidegree (p,q) on U. For each multiindex $\alpha \in \mathbb{Z}^{2n}_+$ we denote by ∂^{α} the corresponding partial derivative of order $|\alpha|$ with respect to the underlying real coordinates on \mathbb{C}^n .

The following is one of the main results of the paper; for additional estimates see Theorem 3.1.

1.1. THEOREM. Let $M \subset \mathbb{C}^n$ be a closed, totally real, C^1 -submanifold and let 0 < c < 1. Denote by \mathcal{T}_{δ} the tube of radius $\delta > 0$ around M. There is a $\delta_0 > 0$ and for each integer $l \geq 0$ a constant $C_l > 0$ such that the following hold for all $0 < \delta \leq \delta_0$, $p \geq 0$, $q \geq 1$, and $l \geq 1$. For any $u \in \mathcal{C}^l_{p,q}(\mathcal{T}_{\delta})$ with $\bar{\partial} u = 0$ there is a $v \in \mathcal{C}^l_{p,q-1}(\mathcal{T}_{\delta})$ satisfying $\bar{\partial} v = u$ in $\mathcal{T}_{c\delta}$ and satisfying also the estimates

$$||v||_{L^{\infty}(\mathcal{T}_{c\delta})} \leq C_0 \delta ||u||_{L^{\infty}(\mathcal{T}_{\delta})};$$

$$||\partial^{\alpha} v||_{L^{\infty}(\mathcal{T}_{c\delta})} \leq C_l (\delta ||\partial^{\alpha} u||_{L^{\infty}(\mathcal{T}_{\delta})} + \delta^{1-|\alpha|} ||u||_{L^{\infty}(\mathcal{T}_{\delta})}), \quad |\alpha| \leq l.$$
(1.1)

If q=1 and the equation $\bar{\partial}v=u$ has a solution $v_0\in\mathcal{C}^{l+1}_{(p,0)}(\mathcal{T}_\delta)$, then there is a solution $v\in\mathcal{C}^{l+1}_{(p,0)}(\mathcal{T}_\delta)$ of $\bar{\partial}v=u$ on $\mathcal{T}_{c\delta}$ satisfying

$$\|\partial_i \partial^{\alpha} v\|_{L^{\infty}(\mathcal{T}_{c\delta})} \le C_{l+1}(\omega(\partial_i \partial^{\alpha} v_0, \delta) + \delta^{-l} \|u\|_{L^{\infty}(\mathcal{T}_{\delta})})$$

for $1 \le j \le n$ and $|\alpha| = l$.

In the last estimate, $\omega(f, \delta) = \sup\{|f(x) - f(y)| : |x - y| \le \delta\}$ is the *modulus of continuity* of a function; when f is a differential form on \mathbb{C}^n , $\omega(f, t)$ is defined as

Received November 30, 2000. Revision received January 31, 2001.