Almost Periodicity and the Remainder in the Ellipsoid Problem

Manfred Peter

1. Introduction

Let $\mathfrak{S} \in \mathbb{R}^{m \times m}(m \geq 2)$ be a positive definite real matrix, let $Q[\mathfrak{x}]:={ }^{t} \mathfrak{x} \mathfrak{S x}$ be the associated quadratic form, and let $Q^{-1}[\mathfrak{x}]:={ }^{t} \mathfrak{x} \mathfrak{S}^{-1} \mathfrak{x}$. For $\mathfrak{a} \in \mathbb{R}^{m}$, define

$$
N_{\mathfrak{a}}(x):=\#\left\{\mathfrak{x} \in \mathbb{Z}^{m} \mid Q[\mathfrak{x}-\mathfrak{a}] \leq x\right\}, \quad x \geq 1
$$

which is the number of lattice points in the ellipsoid $\mathfrak{a}+\sqrt{x} E$, where $E:=$ $\left\{\mathfrak{x} \in \mathbb{R}^{m} \mid Q[\mathfrak{x}] \leq 1\right\}$. A simple lattice point argument shows that

$$
\Delta_{\mathfrak{a}}(x):=N_{\mathfrak{a}}(x)-\operatorname{vol}(E) x^{m / 2} \ll x^{(m-1) / 2},
$$

where

$$
\operatorname{vol}(E)=\frac{\pi^{m / 2}}{(\operatorname{det} \mathfrak{S})^{1 / 2} \Gamma(m / 2+1)}
$$

is the Euclidean volume of E. Landau [18] improved this estimate to

$$
\Delta_{\mathfrak{a}}(x) \ll x^{m / 2-1+1 /(m+1)} \quad(m \geq 2)
$$

using the functional equation of the Epstein zeta function for Q. Krätzel and Nowak [17] derived (in the more general case of a convex body with smooth boundary of strictly positive Gaussian curvature) the better estimate $\Delta_{\mathfrak{a}}(x) \ll x^{m / 2-1+\lambda}$ with

$$
\lambda=\frac{5}{6 m+2} \quad \text { for } m \geq 8, \quad \lambda=\frac{12}{14 m+8} \quad \text { for } 3 \leq m \leq 7
$$

They used exponential sum estimates. In the special case of a rational ellipsoid (i.e., when there is some $a>0$ with $a \mathfrak{S} \in \mathbb{Q}^{m \times m}$), Landau [19] proved the estimate

$$
\Delta_{\mathfrak{a}}(x) \ll x^{m / 2-1} \quad(m \geq 5)
$$

In this case the theory of theta series can be applied, giving better results. Recently the same estimate was proved by Bentkus and Götze [1] for an arbitrary real ellipsoid E and $m \geq 9$. For rational ellipsoids, the bound $O\left(x^{m / 2-1}\right)$ is optimal. For irrational ellipsoids and $m \geq 9$, Bentkus and Götze [2] showed that $\Delta_{\mathfrak{a}}(x)=$ $o\left(x^{m / 2-1}\right)$, which has important applications to conjectures of Davenport and Lewis and of Oppenheim. In [2] the authors used techniques from probability theory that they originally invented to obtain optimal rates of convergence in central limit theorems.

