k-Plane Transforms and Related Operators on Radial Functions

JAVIER DUOANDIKOETXEA, VIRGINIA NAIBO, & Osane Oruetxebarria

1. Introduction

In 1917, J. Radon proved that a smooth function in \mathbb{R}^3 is completely determined by its integrals over all the planes. This leads in a more general setting to consideration of the so-called *k*-plane transform. Let *f* be a smooth function in \mathbb{R}^n and let $1 \le k < n$ be an integer. Denote by G(n, k) the set (called the Grassmannian manifold) of all *k*-dimensional subspaces (or *k*-planes) of \mathbb{R}^n . The *k*-plane transform of *f* is defined as

$$Tf(x,\pi) = \int_{\pi} f(x-y) d\lambda_k(y)$$

for $x \in \mathbb{R}^n$ and $\pi \in G(n, k)$, where λ_k denotes the Lebesgue measure on π . When k = 1 this operator is usually named *X*-ray transform; when k = n - 1, Radon transform. Such transformations have many practical and theoretical applications (see e.g. the references in [S]).

The properties of the k-plane transform depend on the properties of f. Here we are concerned with a size estimate measured in terms of a mixed norm inequality, namely,

$$\left(\int_{G(n,k)} \left(\int_{\pi^{\perp}} |Tf(x,\pi)|^q \, d\lambda_{n-k}(x)\right)^{r/q} d\gamma_{n,k}(\pi)\right)^{1/r} \le C_{p,q,r} \|f\|_p.$$
(1.1)

Here π^{\perp} denotes the subspace orthogonal to π and $\gamma_{n,k}$ is the rotation-invariant measure on G(n, k) (see [M, Chap. 3] for a construction of $\gamma_{n,k}$ and some of its properties). When inequality (1.1) holds for some p, the definition of the k-plane transform can be extended to $f \in L^p$ and $Tf(x, \pi)$ is finite for almost every translate of almost every k-plane.

A scaling argument replacing f(x) by $f(\lambda x)$ shows that (1.1) is possible only if

$$\frac{n}{p} - \frac{n-k}{q} = k.$$

Moreover, checking the inequality against the characteristic function of a parallelepiped of sides $1 \times \delta \times \cdots \times \delta$, we can see that the condition

Received July 21, 2000. Revision received February 27, 2001.

The first and third authors were partially supported by grant EB051/99 of the Universidad del País Vasco/Euskal Herriko Unibertsitatea.