C^1 Immersed Hypersurfaces Separate \mathbb{R}^n MICHAEL HIRSCH & CHARLES PUGH

1. Introduction

Clearly an immersed 2-sphere separates \mathbb{R}^3 . As evidenced by the papers of Vaccaro, Feighn, and M. D. Hirsch, this statement is true—but it is less than clear. We summarize the known results for proper immersions $f: M^m \to N^n$ where the codimension k = n - m is ≥ 1 and M, N are boundaryless. Recall that a map is *proper* if pre-images of compact sets in the target are compact in the domain.

(a) Vaccaro [7]. If *f* is merely PL (piecewise linear) then everything fails; the counterexample is the house with two rooms, which is a nonseparating PL immersion of the 2-sphere in ℝ³. The illustration in Figure 1 is drawn as piecewise smooth. See also Rourke and Sanderson [6] or Bing [1].

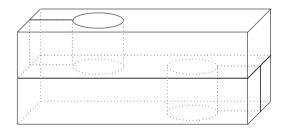


Figure 1 The house with two rooms

- (b) Vaccaro [7]. If f is C¹ and if fM is a subcomplex of a C¹ triangulation of N then H_m(fM; Z₂) ≠ 0, which by Alexander duality implies that fM separates when N = ℝ^{m+1}.
- (c) Feighn [2]. If f is C^2 , k = n m = 1, and $H_1(N; \mathbb{Z}_2) = 0$, then fM separates N.
- (d) Hirsch [4]. If f is C^2 then fM k-separates N in the sense that the kth homology and the kth homotopy groups of the pair $(N, N \setminus fM)$ are nontrivial. The coefficient group for the homology can be either \mathbb{Z} or \mathbb{Z}_2 .

Note that k-separation is also referred to as "k-piercing."

Received September 15, 2000.