An Analog of the Classical Invariant Theory for Lie Superalgebras, II

ALEXANDER SERGEEV

This paper is a detailed exposition of [S3] with several new results added. It also complements and refines the results of [S2]. Meanwhile there has appeared a paper [J1] where a particular case is considered but in more detail and where other references are offered; see also [J2] and [Y].

1. Preliminaries

In what follows, \mathfrak{S}_k stands for the symmetric group on *k* elements. Let λ be a partition of the number *k* and let *t* be a λ -tableau. Recall that *t* is called *standard* if the numbers in its rows and columns grow from left to right and downward. Denote by C_t the column stabilizer of *t*, and let R_t be its row stabilizer. We further set

$$e_t = \sum_{\tau \in C_t; \, \sigma \in R_t} \varepsilon(\tau) \sigma \tau, \qquad \tilde{e}_t = \sum_{\tau \in C_t; \, \sigma \in R_t} \varepsilon(\tau) \tau \sigma. \tag{0.1}$$

Let \mathbb{N} be the set of positive integers, let $\overline{\mathbb{N}}$ be another, "odd", copy of \mathbb{N} , and let $\mathbb{M} = \mathbb{N} \coprod \overline{\mathbb{N}}$ be ordered so that each element of the "even" copy (\mathbb{N}) is smaller than any element from the "odd" copy; inside of each copy, the order is the natural one. We will call the elements from \mathbb{N} "even" and those from $\overline{\mathbb{N}}$ "odd", so we can encounter an "even" odd element and so forth.

Let *I* be the sequence of elements from \mathbb{M} of length *k*. We fill in the tableau *t* with elements from *I*, replacing element α with i_{α} . The sequence *I* is called *t-semistandard* if the elements of *t* do not decrease from left to right and downward, the "even" elements strictly increase along columns, and the "odd" elements strictly increase along rows.

The group \mathfrak{S}_k naturally acts on sequences *I*. Let \mathfrak{A} be the free supercommutative superalgebra with unit generated by $\{x_i\}_{i \in I}$. For any $\sigma \in \mathfrak{S}_k$, define $c(I, \sigma) = \pm 1$ from the equation

$$c(I, \sigma)x_I = x_{\sigma^{-1}I}, \text{ where } x_I = x_{i_1} \dots x_{i_k}.$$
 (0.2)

Clearly, $c(I, \sigma)$ is a cocycle, that is,

$$c(I, \sigma\tau) = c(\sigma^{-1}I, \tau)c(I, \sigma).$$

With the help of this cocycle, a representation of \mathfrak{S}_k in $T^k(V) = V^{\otimes k}$ for any superspace *V* may be defined as

Received August 2, 2000. Revision received January 22, 2001.