(p-1)th Roots of Unity mod p^n , Generalized Heilbronn Sums, Lind–Lehmer Constants, and Fermat Quotients

TODD COCHRANE, DILUM DE SILVA, & CHRISTOPHER PINNER

ABSTRACT. For $n \geq 3$, we obtain an improved estimate for the generalized Heilbronn sum $\sum_{x=1}^{p-1} e_{p^n}(yx^{p^{n-1}})$ and use it to show that any interval \mathcal{I} of points in \mathbb{Z}_{p^n} of length $|\mathcal{I}| \gg p^{1.825}$ for n=2, $|\mathcal{I}| \gg p^{2.959}$ for n=3, and $|\mathcal{I}| \geq p^{n-3.269(34/151)^n + o(1)}$ for $n \geq 4$ contains a (p-1)th root of unity. As a consequence, we derive an improved estimate for the Lind–Lehmer constant for the Abelian group \mathbb{Z}_p^n and improved estimates for Fermat quotients.

1. Introduction

Let p be a prime, $n \in \mathbb{N}$, $\mathbb{Z}_{p^n}^*$ be the group of units mod p^n , and $G_n \subset \mathbb{Z}_{p^n}^*$ be the subgroup of (p-1)th roots of unity,

$$G_n := \{x \in \mathbb{Z}_{p^n}^* : x^{p-1} = 1\} = \{x^{p^{n-1}} \pmod{p^n} : 1 \le x \le p-1\}.$$

For $y \in \mathbb{Z}$, let $S_n(y)$ denote the generalized Heilbronn sum

$$S_n(y) := \sum_{x \in G_n} e_{p^n}(yx) = \sum_{x=1}^{p-1} e_{p^n}(yx^{p^{n-1}}),$$

where $e_{p^n}(\cdot) = e^{\frac{2\pi i \cdot}{p^n}}$, and let

$$H_n = \max_{p^n \nmid y} |S_n(y)|.$$

Our interest here is in estimating H_n and studying the distribution of points in G_n . In particular, we wish to determine how large M must be so that any interval

$$\mathcal{I} := \{a+1, \dots, a+M\} \subset \mathbb{Z}_{p^n} \tag{1.1}$$

of length M is guaranteed to contain an element of G_n . Equivalently, we wish to determine an upper bound on the maximal gap between consecutive (p-1)th roots of unity. It is well known that an estimate for H_n leads to a corresponding estimate on the size of the gap. We make this explicit in Corollary 3.1, where we prove that any interval of length $|\mathcal{I}| \geq 3p^{n-1}H_n$ contains an element of G_n .

The current best estimate for H_2 is due to Shkredov [17, Thm. 15],

$$H_2 \ll p^{\frac{5}{6}} \log^{\frac{1}{6}} p,$$
 (1.2)

Received November 12, 2015. Revision received November 29, 2016.